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Abstract
How to improve discriminative feature learning is central in classification. Existing works address this problem by explicitly
increasing inter-class separability and intra-class compactness by constructing positive and negative pairs for contrastive
learning or posing tighter class separating margins. These methods do not exploit the similarity between different classes as
they adhere to independent identical distributions assumption in data. In this paper, we embrace the real-world data distribution
setting in that some classes share semantic overlaps due to their similar appearances or concepts. Regarding this hypothesis,
we propose a novel regularization to improve discriminative learning.We first calibrate the estimated highest likelihood of one
sample based on its semantically neighboring classes, then encourage the overall likelihood predictions to be deterministic by
imposing an adaptive exponential penalty. As the gradient of the proposed method is roughly proportional to the uncertainty
of the predicted likelihoods, we name it adaptive discriminative regularization (ADR), trained along with a standard cross
entropy loss in classification. Extensive experiments demonstrate that it can yield consistent and non-trivial performance
improvements in a variety of visual classification tasks (over 10 benchmarks). Furthermore, we find it is robust to long-tailed
and noisy label data distribution. Its flexible design enables its compatibility with mainstream classification architectures and
losses.
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1 Introduction

Visual classification is one of the fundamental research topics
in machine learning and computer vision. Typically, it trans-
forms high-dimensional visual signals (e.g., images, videos,
etc.) into the corresponding latent features, and then differ-
entiates them into different classes.With the advance of deep
learning and the availability of big data, visual classification
makes significant leaps in both theories and practices, widely
employed in face recognition, object detection, and so on.

In visual classification studies, efforts have been made
to improve discrimination ability by increasing inter-class
separability and intra-class compactness. Existing methods
(Hadsell et al., 2006; Liu et al., 2016; Zhu et al., 2019; Sun
et al., 2020) are either based on positive and negative sample
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Fig. 1 Different predicted logit distributions are plotted in (a). Differ-
ent data distributions are drawn in (b) and (c). When collecting data in
the wild, one often expects the distance between clusters to be equal
i.e., (c) an ideal category distribution. But the most cases, we collected
the dataset can be represented as (b), in which the clusters vary in vari-

ance and inter-class distance (various sizes of circles indicate different
variances). The hard samples at the edge of the clusters contribute sig-
nificantly to the decision surface (see Toneva et al. (2019)), while they
are more likely to make ambiguous predictions as the blue curve is
drawn in (a)

pairs or large-margin softmax, the former favors representa-
tional learning and the latter is an optimization of the decision
surfaces. Specifically, the L-softmax (Liu et al., 2016) and its
variants (Liu et al., 2017;Wang et al., 2018;Deng et al., 2019)
reinforce the deep neural network learning a bigger margin
around the separating hyperplanes by factorizing the cosine
similarity into amplitude and angular. This idea is equivalent
to making hyperplanes with a larger margin than the original
ones driven by a vanilla softmax (aka cross entropy) loss.
Both these two types of methods usually work decently on
fine-grained (e.g., LFW (Huang et al., 2008)) or small-scale
visual classification datasets (e.g., CIFAR-10 (Krizhevsky,
2009)), while bringing trivial benefits to large-scale dis-
crimination tasks. We suppose these lifting optimizations’
low-bound methods could accelerate large-scale classifica-
tion training but hardly improve its performance. Because
real-world data are not distributed ideally, hard examples
(usually found in large-scale datasets) hinder the effective
training of large class margins.

Specifically, training and testing data in the existing visual
classification are supposed to be in independent identical dis-
tributions (i.i.d.). In this scenario, training a classification
model byminimizing the cross entropy between the predicted
likelihood and the given ground truth can lead to a discrim-
inative representation, guaranteed by maximum likelihood
estimation. This usually does not hold true, as several defined
categories share similar concepts (e.g., cats and tigers have
similar visual appearance) and some ones have large intra-
class dispersion (i.e. one single cluster has different similarity
to the others as given in Fig. 1b).We suppose that can be a big
challenge for the traditional maximum likelihood estimation
training strategy built upon i.i.d, see Arora et al. (2018) and
Banburski et al. (2021) for similar statements. For this pur-
pose, we propose a new classification regularization on the

estimated likelihoods by exploiting inevitable data depen-
dence.

Due to the pervasive inter-class similarities and intra-class
dispersion, as shown in Fig. 1a the predicted likelihoods (i.e.
predicted logits from softmax) tend to show a smooth distri-
bution instead of a spiky one, contradicting the initial data
assumption that each example has only one label. Thus, we
propose an adaptive discriminative regularization to encour-
age the predicted likelihoods to be deterministic and stabilize
such optimization procedure by controlling gradient magni-
tude according to the certainty of likelihoods. Specifically, as
shown in Fig. 2, we firstly calibrate the predicted maximum
likelihoods of one sample by its semantically similar classes,
then we exert a discriminative constraint on the predicted
likelihoods based on a normalized exponential function, that
does not only makes the corresponding gradients adaptive
to the confidence of predicted likelihoods (i.e. high deter-
ministic likelihoods give a small gradient magnitude, while
low deterministic likelihoods give a big one), but also is
optimization-friendly.

We validate the effectiveness of our hypothesis and the
corresponding regularization by visualizing the features
learned by different optimization targets, as illustrated in
Fig. 3. To quantify the performance of the trained classi-
fication models, we employed the expected calibration error
(ECE)metric, as proposed byGuo et al. (2017).Our proposed
ADR method consistently achieves a lower ECE value com-
pared to other methods, indicating its superior calibration
performance. It is worth noting that the inter-class distance
achieved with our ADR method is larger than that achieved
with the existing baselines. Intuitively, it can bridge the gap
between the estimated likelihood and the practical data dis-
tribution (i.e. it may have a better separating hyperplane).

We thoroughly discuss the properties of our proposed
ADR theoretically. More importantly, we empirically val-
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Fig. 2 The conceptual illustration of how training a supervised model
with our ADR in a toy experiment (details see Sect. 3.3). Minibatch
images are fed into the backbone and softmax to obtain the predicted
logits Ỹ . At different training phases, we capture the predicted logits,
normalize them according to their confidence, and plot the change curve

of ADR (the gray shaded area indicates the possible range of Top-1 log-
its). The cross-entropy loss pushes the optimization direction (the blue
arrow) to the positive side at the beginning, while our ADR enlarges
the separability between classes and makes the optimization fall to one
side further (the green arrow)

Fig. 3 Visualization of classifier layer’s features. The first row comes
from a training set, the second row is from a validation set. To be con-
vincing, we plotted the entire sample. The first five columns represent
the features extracted from the model which is trained by CE loss,

CE w/ ADR, CE w/ LS, CE w/ LS w/ ADR, and CE w/ Entropy loss
respectively. The Expected Calibration Error (ECE) on the CIFAR-10
validation set is reported below. Lower is better

idate its effectiveness in multiple mainstream classification
benchmarks with various settings in Sect. 4. Extensive exper-
iments show our ADR improves current mainstream model
architecture with standard classification optimizations non-
trivially.Also, its universal propertiesmake the trainedmodel
robust to long-tailed and noise-labeled validation data. In
summary, our contributions are summarized as follows:

• We design a new discriminative regularization approach
for the supervised visual classification to enlarge the
inter-class distance. It is relatively orthogonal to vari-

ous discriminative optimization targets as it can further
improve existing baselines non-trivially.

• We demonstrate that the proposed ADR is compatible
with backbones in convolutional neural network (CNN),
transformer, and multilayer perceptron (MLP) architec-
tures, and it exhibits robustness against noisy labels and
long-tailed distributions.
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2 RelatedWork and Preliminaries

Existing works such as contrastive loss (Hadsell et al., 2006),
triplet loss (Schroff et al., 2015), L-Softmax loss (Liu et al.,
2016), SphereFace (Liu et al., 2017), Cosface (Wang et al.,
2018), Arcface (Deng et al., 2019), online label smoothing
(OLS Zhang et al. (2021)) and circle loss (Sun et al., 2020)
have been proposed to enhance the performance of traditional
softmax cross entropy loss. In this section, we will briefly
overview these methods respectively according to their moti-
vations. Specifically, this work is inspired by superset label
learning, we will introduce the definition and some research
works on it at the end.
Model Regularization
In deep learning, many strategies are known collectively as
regularizations. In order to reduce the validation error, those
strategies often trade off the increase in training error. For
example, to alleviate the issue of over-fitting, label smoothing
(Szegedy et al., 2016) avoids the search for exact likeli-
hoods. It computes cross entropy with a weighted mixture
of uniform distribution of targets (i.e. injecting noise into the
targets). Label smoothing (LS) is a technique that chooses to
disregard particularly challenging samples in order to effec-
tively capture simpler samples, thereby mitigating the risk
of overfitting. As a complement, our ADR focuses on like-
lihood estimation to improve the confidence of the logits.
And, this improvement is contingent upon the assumption
that the samples are being optimized in the correct direction.
InMüller et al. (2019), Muller et al. discussed why and when
label smoothing should work, and demonstrated that label
smoothing implicitly calibrates learned models. Arguably,
the accuracy improvement is not obvious or even decreases
if using relatively small networks and face verification tasks
with LS. But in the same case, our ADR still works (please
turn to Sect. 4.1 for details).
Discriminatory Feature Learning
For the same motivation (i.e. learning discriminatory fea-
tures), existing methods are either designed to increase
the learning difficulty of separating hyperplanes or require
positive and negative samples as training. For example, con-
trastive loss requires the same class features to be as similar
as possible, yet the distance between different class features
is larger than a margin. And the triplet loss requires 3 input
samples at a time and maximizes the distance between the
anchor and a negative sample. Alternatively, the circle loss
provides a more flexible optimization approach by assigning
distinct penalty strengths for each similarity score. Specifi-
cally, it differentiates between thewithin-class and inter-class
similarity scores, allowing formore fine-grained adjustments
during optimization. But they all require a carefully designed
pair selection procedure. By contrast, the L-Softmax loss
was first proposed in a novel view of the cosine similarity
to learn discriminative features and bring a series of exten-

sion researches (Wang et al., 2018; Liu et al., 2017; Deng
et al., 2019). For example, despite the similarity betweenArc-
Face and previous works, it has a better geometric attribute.
However, all those methods will increase additional parame-
ters W of fully connected layers compared with the original
softmax CE loss. Specifically, to prevent embedding mod-
els from learning noisy representations, Shi et al. proposed
probabilistic face embeddings (PFEs Shi and Jain (2019)).
But it needs additional calculations to estimate a distribution
in the latent space. And the Arcface does not converge well
with the PFEs. In contrast to those methods, ADR can be
embedded into them easily without adding more cost.
Superset Label Learning
The Superset label learning (SLL, aka partial label learning
(Wang et al., 2019a; Xu et al., 2021a; Wang et al., 2021)) is
a machine learning paradigm that differs from conventional
supervised learning, in which one training example can be
ambiguously annotated with a set of labels, among which
only one is correct. Existing methods for SLL commonly
contain an explicit disambiguation operation to pick up the
ground truth label of each training example from its candi-
date labels. For example, Gong et al. (2017) utilizes the l22
norm (similar to the variance-base approach) as the discrim-
ination term, and develops a regularization approach for the
instance-based SLL. Yao et al. (2020) designs an entropy-
base regularizer as the discrimination term to enhance the
discrimination ability of the model. In this paper, we try
to formulate an adaptive discriminative regularization for
supervised visual classification. Different from SLL, the
supervised learning models need a larger backward gradi-
ent to enhance the confidence of predicted likelihoods at the
beginning, while such a gradient should be small to avoid
over-fitting when training is nearly ended.
Preliminaries
In the framework of maximum likelihood estimation (MLE),
the cross entropy loss is employed for visual classifica-
tion (De Boer et al., 2005). Suppose we have n training
instances X = {x1, x2, . . . , xn} with the ground truth labels
Y = {y1, y2, . . . , yn}, and every yi only has one explicit
value yi ∈ {1, 2, . . . , c}, c is the number of classes. In
practice, we often divide the training data into M batches
X = {X1,X2, . . . ,XM }, and every Xm (m = 1, 2, . . . , M)
contains B samples. After the feature embedding and the
softmax function, every xi yields one prediction vector ỹi .
The ỹi j ( j = 1, 2, . . . , c) denotes the predicted probability
that the example xi belongs to the j-th category. The cross-
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Fig. 4 The visualization of function curves when only the binary clas-
sification is considered. The horizontal axis represents the predicted
logits (pt ), while the vertical axis represents the value of the corre-
sponding loss function or its derivative. The discriminative function is

shown below, and its derivative function is shown above. a Variance-
base functions. bEntropy-base functions. c Exponential-variance based
functions, a potential solution for ADR. (d) As in Eq. (4), exponential-
entropy based functions, the solution we choose for ADR

entropy loss for a batch of images can be expressed as

Lce(Ỹm,Ym) = −
B∑

i=1

c∑

j=1

yi j log(ỹi j ))

s.t.
c∑

j=1

ỹi j = 1, ỹi j ≥ 0,∀i = 1, 2, . . . , B,

(1)

For simplicity, we also give below the cross entropy and its
derivative for the binary case.

⎧
⎨

⎩

Lce(pt , y) = −log(pt )

∂Lce

∂ pt
= − 1

pt
,

(2)

where y ∈ {0, 1} specifies the target, pt donates p if y = 1
or 1 − p if y = 0 (p ∈ [0, 1] ). According to Eq. (2), when
the pt approaches 1, the curve of cross entropy flattens out.

3 The ProposedMethod

3.1 Intuition

In classical visual classification formulation, each visual
sample (image or video) is assigned a discrete label. We then
predict the likelihood about this sample belongs to the given
classes and infer its estimated label is the one with the max-
imum logit. Intuitively, the predicted logits should be sparse

as only one class is indeed associated. Optimizing the cross
entropy between the predicted logits and the ground truth
leads the predicted logits to the real data distribution. With
this premise, we suppose to encourage the predicted logits to
be deterministic will benefit the whole optimization.

Intuitively, we could directly put sparsity regularization
on the predicted logits using the approximated implemen-
tation, e.g., minimizing l1 norm of the differential between
them, or their entropy. Empirically, we find these solutions
can accelerate the complete training but without evident per-
formance increase.We attribute this to their coarse control of
the regularization strength. Specifically, the gradient of the l1
norm is a constant C, while the gradient of the entropy starts
with zero and ends with larger values (as shown in Fig. 4b).
Neither of them is suitable for the optimization of supervised
classification. These observations and analysis inspire us to
design an adaptive discriminative regularization. In detail,
we expect the penalty on the logits to be large when their
distribution seems nearly uniform, while it shrinks to small
when their distribution changes to be spiky. Further, consid-
ering the optimization efficiency and stability, we prefer the
change in the first-order derivative of this penalty to be huge
when the predicted logits of each class are close to each other.
Meanwhile, such a change gets smaller when these logits dif-
fer from each other dramatically.
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3.2 Definition

Based on our motivation, we present our adaptive dis-
criminative regularization to improve visual classification
optimization. It automatically adjusts the discriminative con-
straints according to the confidence of the predicted logits.
Specifically, we hypothesize the penalties on the predicted
likelihoods should be roughly linear to their own uncertainty
as plotted in Fig. 4d.

3.2.1 General Form

Our ADR for the supervised classification can be expressed
as

Ld(Ỹm) =
B∑

i=1

F(ỹi ),

s.t.
∣∣∣ ∂F(ỹi )

∂ ỹi

∣∣∣ :=
{

≈ 0+, φ(ỹi ) ≤ ε

∝ φ(ỹi ), otherwise

(3)

where ỹi ∈ Ỹm , and ϕi = φ(ỹi ) measures the uncertainty of
ỹi along with the non-negative and normalization constraints
(0 < ϕi ≤ 1). For example, the entropy-base function satis-
fying this constraint, able to serve as this uncertainty function
φ. ε is a threshold (0 < ε < 1) associatedwithϕi and τ (τ is a
hyper-parameter in Eq. (4)). F(·) donates the discriminative
regularization function of our ADR. As given in Eq. (3), we
expect its partial gradient w.r.t. ỹi should be non-negative,
and is approximately proportional to the uncertainty of ỹi
when φ(ỹi ) is larger than a given threshold ε; while it is
smaller than ε, such gradient is close to 0.

With this design of gradient changes, it encourages the
predicted logits to be certain and the overall training is adap-
tive based on the certainty of predictions. Specifically, the
optimization of visual classification along with this regular-
ization method will be accelerated in the early training stage
with the uncertain predicted logits and will be accordingly
slowed down when predictions tend to be deterministic. Ide-
ally, this regularization scheme leads to faster convergence
and more stable performance during the training plateau.

3.2.2 A Simple Solution

An intuitive simple solution for our ADR (Eq.3) is given
below

F(ỹi ) = 1

(
√
2πϕi )τ

exp{− 1

2ϕi
T (ỹi )},

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

φ(ỹi ) = − 1

B

B∑

i=1

ỹ	
i log(ỹi )

log(c)
,

T (ỹi ) = ‖TopK(ỹi , τ )‖22 ,

(4)

where ϕi is a non-deterministic measure of the predicted
vector. We apply the exponential function because of its nat-
ural simplicity properties. Different from trigonometric and
polynomial functions, all the n-th order partial derivatives
of the exponential are their own, and they are always the
same increasing functions. Intuitively, the exponential form
has better gradient diversity (see Yin et al. (2018)), and that
also can simplify the process of backward derivatives (turn
to Sect. 3.3 for details). The other basis functions which are
subject to Eq. (3) also can be utilized to formulate the solution
of our ADR.

T (·) is called confidence-based normalization function,
characterizing the sufficient statistics (Dynkin, 1978) of the
classes based on their predicted logits. TopK(·) is a non-
linear sorting function. We suppose that sufficient statistics
can be used to alleviate the negative influence brought by bad
cases. For example, a classifier may misclassify tigers to cats
in some scenarios with certain logits. Due to the apparent
similarity between tiger and cat classes, their logits will be
close even tiger class has a higher logit.With sufficient statis-
tics, the transformation of the predicted logits will become
more uncertain considering local class similarities, giving
proper gradient changes even with current wrong predic-
tions. Specifically, a logits vector ŷi (

∑τ
j=1 ŷi j ≤ 1) of the

ambiguous classes is selected byTopK(ỹi , τ ) from the sparse
ỹi . τ ∈ N

+ is a hyper-parameter and indicates the assumed
number of similar classes (1 ≤ τ ≤ c ). The other non-linear
functions which can pick out the local class similarities will
work too. For example, setting a confidence threshold to gen-
erate ŷi . “‖·‖2" computes the l2 norm of the vector, and the
l1 norm “‖·‖1" may work too. As a result, a simple form of
our approach to supervised classification can be written as

Loss = Lce(Ỹm,Ym) + γLd(Ỹm), (5)

where γ is one non-negative trade-off parameter controlling
the relative weight of the ADR in the overall cost function.

3.3 Discussion

This section further discusses the necessity of our ADR and
clarifies the key operations in it.
Why does minimizing cross entropy need discriminative
regularization?
As we described in Sect. 1, classes in real-world datasets are
not ideally independent of each other. They share high-level
concepts more or less, e.g., cats and dogs both have four legs
and fur, compared with airplanes or ships. Simply put, we
suppose that supervised tasks are subject to non-deterministic
problems too, a discriminative regularization favoring deter-
ministic likelihoods could alleviate this issue. Specifically,
we give a conceptual illustration of how cross-entropy and
our ADR interact with each other from a toy example as
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given in Fig. 2. This toy example is conducted on CIFAR-
10 (Krizhevsky, 2009) with AlexNet (Krizhevsky, 2014),
and our ADR can improve the cross entropy performance
up to 4.42% (see Sect. 4.1). At different training phases, we
capture the predicted logits and plot their change curve of
ADR as given in Fig. 2 (middle). In Fig. 2, we observe that
our adaptive discriminative regularization andorthodox cross
entropy do not share the same optimization path in training.
The cross-entropy can be seen as the blue (upward) arrow in
Fig. 2, and its optimization direction is pulled to the positive
side easily with the MLE algorithm. Given the right opti-
mization direction, we suppose our given ADR can further
pull the optimization toward one end along the (yellow) line
where the predicted logits are located. In Fig. 2, we find the
predicted likelihoods are amplified with ADR, making the
optimization quickly fall to one side further. Hence, discrim-
inative regularization is not only suitable for supervised tasks
but also requires fine-grained design.
How About Employing Entropy as a Discrimination Term?
Wefirst overview the stochastic gradient descent (SGD) algo-
rithm (Qian, 1999). It follows the estimated gradient downhill
as

⎧
⎨

⎩
G = ∂L(θ)

∂θ

θ ← θ − αG,

(6)

where θ denotes the learnable parameters, α is the learning
rate, G is the estimated gradient descent of the cost functions.
The SGD updates θ by calculating the partial derivatives of
the cost function at each parameter, i.e.,∇θL(θ), and it often
finds a low value of the cost function quickly. We find that
the learning step of every update of θ is not proportional to
the value the loss function takes, but the partial derivative it
makes. From this insight, the existing discrimination terms
only pay attention to the functionality of the regularization
constraints, i.e., the largest L(θ) corresponds to the most
ambiguous θ , and vice versa. However, we advocate that in
addition to the above criteria, the timing and magnitude of
the regularization intervention should be taken into account
specifically.

Different discriminative functions are drawn in Fig. 4.
Observing the derivative function curves, we find that dif-
ferent from the entropy function, the proposed exponential-
based solutions yield a larger gradient for the early to
mid-stage of training. Additionally, to prevent over-confident
predictions the gradient of our solution rapidly closes to zero
later in training.Utilizing the entropy as a discrimination term
(e.g., Li et al. (2003); Yao et al. (2020)) to widen the gap of
predicted likelihoods could work well in SLL. Because the
SLL aims to the problem that a training example is associ-
ated with a set of candidate labels. In detail, the gradient of
entropy could be zero as we do not know whether the opti-

mization direction is right at the beginning, and it holds a
large value due to the model already knowing where the pos-
itive side is later in training. Therefore, employing entropy as
the discriminative regularization in Eq. (5) will lead to severe
optimization issues theoretically and empirically, while the
given exponential-based solutions will not.
For the uncertainty function φ in Eq. (4), entropy-base bet-
ter than variance-base?
The variance describes the variation of one random variable
while the entropy represents the uncertainty of the informa-
tion, both of them can be used as an uncertainty function
φ which is designed to evaluate the confidence of predicted
likelihoods. However, when a random variable obeys a non-
convex distribution, the ability of the variance to describe the
information uncertainty will reduce, while the entropy could
do better (turn to Zidek and van Eeden (2003) for details). As
shown in Fig. 4, we give two specific implementations for it,
in which the derivative of the exponential variance decreases
faster than that of the exponential entropy. We suppose that
the effective interval of its derivative function is then small.
Hence, we pick the latter (the exponential entropy in Fig. 4
(d)) as the default solution of our ADR throughout this paper.
Gradient of ADR
Not only does the ADR suit our requirements for its changes,
but also it is easy to be optimized according to its gradient
form.According to Eq.4, the solution of ourADR for a single
sample Ld(ỹi ) can be rewritten as

Ld(ỹi ) =
τ∏

j=1

1√
2πϕi

exp

{
− 1

2ϕi
ŷ2i j

}
. (7)

We only calculate the partial derivative ∂Ld (ỹi )
∂ ỹi

for simplicity,
and it can be computed via

∂Ld(ỹi )

∂ ỹi
=

τ∑

j=1

[
Ld(ỹi ) · ŷ

2
i jϕ

′
i j − 2 ŷi jϕi − ϕiϕ

′
i j

2ϕ2
i

]
,

s.t. ϕ′
i j = ∂ϕi

∂ ŷi j
.

(8)

The backward derivation (above equation) contains the
results of the forward propagation calculation (e.g. Equa-
tion (7)), which will reduce the time complexity of our ADR
significantly. Specifically, the naive computation of Eq. (8)
requires only O(τ 2) operations, as the terms ϕi and Ld(ỹi )
can be computed once and reused in each derivation.

4 Experiments

To evaluate the proposed ADR, we conduct extensive exper-
iments on five typical vision applications, including image
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Table 1 Recognition Top-1
error rate on ImageNet-1K
classification benchmark

Model Param Method Epochs Top-1%

RN-50 25.6M CE loss 250 23.68†

RN-50 25.6M LS (Szegedy et al., 2016) 250 22.82†

RN-50 25.6M CutOut (DeVries & Taylor, 2017) 250 22.93†

RN-50 25.6M BYOT (Zhang et al., 2019) 250 23.04†

RN-50 25.6M T f -K Dsel f (Yuan et al., 2020) 90 23.59†

RN-50 25.6M T f -K Dreg (Yuan et al., 2020) 90 23.58†

RN-50 25.6M+ OLS (Zhang et al., 2021) 250 22.28†

RN-101 44.7M CE loss 250 21.87†

RN-101 44.7M LS (Szegedy et al., 2016) 250 21.27†

RN-101 44.7M CutOut (DeVries & Taylor, 2017) 250 20.72†

RN-101 44.7M+ OLS (Zhang et al., 2021) 250 20.85†

I-V2 23.9M CE loss – 23.10‡

I-V2 23.9M LS (Szegedy et al., 2016) – 22.80‡

I-V4 43.0M CE loss – 19.10‡

I-V4 43.0M LS (Szegedy et al., 2016) – 19.10‡

RN-50 25.6M CE loss 100 23.06

RN-50 25.6M w/ ADR 100 22.49

RN-101 44.7M CE loss 100 21.30

RN-101 44.7M w/ ADR 100 20.76

ViT-B/16 86.6M CE loss 300 18.12

ViT-B/16 86.6M w/ ADR 300 17.80

ViT-B/16 86.6M LS 300 18.05

ViT-B/16 86.6M w/ ADR 300 17.69

† and ‡ denote the results reported in Zhang et al. (2021) and Müller et al. (2019) respectively
+ means the addition of some parameters
“ResNet” is abbreviated as “RN”, and “I-V2” means “INCEPTION-V2”

classification (ImageNet-1K (Russakovsky et al., 2015),
Flowers-102 (Nilsback & Zisserman, 2008), and CIFAR-
10), face verification (CASIA (Yi et al., 2014), etc.), facial
emotion recognition (FER2013 (Goodfellow et al., 2013)),
action recognition (NTU RGB+D Shahroudy et al. (2016)),
and unsupervised image segmentation (PASCAL VOC 2012
(Everingham et al., 2015) BSDS500 (Arbelaez et al., 2010)).
Experimental Settings
In all the experiments, we use the same neural network
architecture and experimental environment (Pytorch 1.7.0
on NVIDIA 1080Ti) for fair comparisons. Different losses
are employed to outline the properties of ADR. The applied
neural models include such CNN-based ones with differ-
ent depths and structures as AlexNet (Krizhevsky, 2014),
VGGNet (Khaireddin & Chen, 2021), ResNet-50/101 (He
et al., 2016) and the extended ResNet3D-34 (Ji et al.,
2021). Transformer-based architectures are evaluated, e.g.,
ViT (Dosovitskiy et al., 2021) and ConvMixer (Trockman &
Kolter, 2022), as well. In the tables, bold formatting signi-
fies the best performance method for the experiment, unless
stated otherwise.

4.1 Image Classification

ImageNet-1K
We employ ResNet-50/101 in Radosavovic et al. (2020)
as backbones and perform all experiments by utilizing the
same training/testing protocols as in Szegedy et al. (2016)
and Radosavovic et al. (2020). We also use a vision trans-
former architecture ViT-B/16 (Dosovitskiy et al., 2021) as
the backbone and follow the DeiT (Touvron et al., 2021)
training configuration for training. The results are reported
in Table 1. Our ADR consistently decreases the error rate on
ImageNet-1K with ResNet-50/101 more than 0.5% (0.57%
with ResNet-50 and 0.54%with ResNet-101). That validates
the effectiveness of the proposedADRon a large-scale super-
vised classification dataset with a decently large convolution-
based model. Also, such effectiveness is further verified with
a popular vision transformer model, ViT-B/16, resulting in a
reduction of the error rate by 0.32% and 0.36% compared to
the CE and LS methods, respectively. In summary, it shows
the performance improvement brought by ADR is relatively
agnostic to model architecture.
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Table 2 Recognition accuracy on Flowers-102 with the architecture of
ResNet-50

Model Method Pub.’Year Top-1% Top-5%

RN-50 CE loss TIP’21 90.69† 97.57†

RN-50 CE+LS TIP’21 92.42† 98.07†

RN-50 CE+OLS TIP’21 92.86† 98.45†

RN-50 CE loss TIP’21 90.89 97.45

RN-50 CE+LS TIP’21 92.12 97.71

RN-50 CE+OLS TIP’21 93.12 98.31

RN-50 CE+ADR - 92.36 (1.47 ↑) 98.10

RN-50 LS+ADR - 93.12 (1.00 ↑) 98.28

RN-50 OLS+ADR - 93.49 (0.37 ↑) 98.05

† denotes the results reported in Zhang et al. (2021). ResNet is abbre-
viated as RN

Flowers-102
We find ADR works fine for fine-grained discriminative
tasks. We conducted experiments by following the same
architecture of ResNet-50 as Zhang et al. (2021). The results
are given in Table 2. They demonstrate that ourADRcan han-
dle fine-grained classification. Based on the standard CE, LS,
andOLS, the additional ADR can achieve a notable improve-
ment by 1.47%, 1.00%, and 0.37%, respectively.
CIFAR-10
Also, we employ the neutered version of AlexNet (with-
out batch normalization layers Krizhevsky (2014)) and one
advanced Transformer-based model ConvMixer as the back-
bones. We refer to the commonly used protocols with data
augmentation in Lee et al. (2015) for training. Quantitative
results are shown in Table 3. Compared to the CE, Entropy,
and LS, the proposed ADR obtained the best performance
boost on both very different backbone baselines (i.e. 4.42%
with AlexNet and 2.68% with ConvMixer).

The entropy loss can be embedded in the cross entropy
too, we conduct experiments to compare our ADR against
it. Following the entropy formulation defined in Yao et al.

Fig. 5 The classification performance of ADR and the entropy loss,
varying γ, λ for ADR (w. optimal τ ) and the entropy loss respectively

(2020), we define the total loss function as:

Loss = Lce(Ỹm,Ym) + λLe(Ỹm), (9)

where λ denote the strength of the modulating term of
Le(Ỹm). As shown in Table 3, there is a clear gap between the
best accuracy of the entropy (74.21%) and ADR (77.07%).

4.1.1 Ablation Study

Specifically,we investigate the influences of hyper-parameters
and tolerance of ADR to noisy labels on CIFAR-10.
Sensitivity to Parameters
The tradeoff parameter γ is to control the strength of the
proposed ADR. With larger γ , the discriminative force in
Fig. 2 becomes larger and thepredicted logits become sparser.
Another parameter τ closely determines the value of the
threshold ε in Eq.3. With smaller τ , the discriminative force
will increase and the strength of ADR γ should be smaller
accordingly. The relation between the accuracy and γ with
different τ on CIFAR-10 is reported in Fig. 5. With the
increase of γ and a fixed τ , one can see that the accuracy

Table 3 Recognition accuracy
of different methods on
CIFAR-10. To demonstrate the
effectiveness of ADR even with
a tiny model, we utilize the
original AlexNet (Krizhevsky,
2014) as the backbone

Model Method Pub.’Year Top-1% Top-5%

AlexNet† CE loss NIPS’19 86.80† –

AlexNet† LS NIPS’19 86.70† –

AlexNet CE loss arXiv’14 73.33 98.01

AlexNet CE+Entropy – 74.21 (0.88 ↑) 98.02

AlexNet CE+ADR – 77.07 (3.74 ↑) 98.00

AlexNet LS CVPR’16 76.31 (2.98 ↑) 98.09

AlexNet LS+ADR – 77.75 (4.42 ↑) 97.60

ConvMixer CE loss arXiv’22 89.79 99.70

ConvMixer CE+ADR – 92.47 (2.68 ↑) 99.78

† denotes the model and results are described in Müller et al. (2019). These results also suggest that LS
performs poorly on small datasets and small models
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Table 4 The top-1 accuracy
comparison of CE and ADR on
CIFAR-10 with adding different
noise rates (NR)

Method NR=20% NR=40% NR=60% NR=80%

CE loss 72.51 68.95 63.45 43.38

CE+ADR 74.89 (2.38 ↑) 70.53 (1.58 ↑) 63.65 (0.20 ↑) 43.83 (0.45 ↑)

Fig. 6 Classification accuracy under different noise rates. The accuracy curve of ADR stabilizes quickly and does not exceed the percentage of
clean labels at convergence, while the CE does not exhibit the same behavior. This observation provides support for the robustness of convergence
during ADR training

of ADR is always on the rise. The empirical value for the
hyperparameters γ and τ are both related to the distribution
of the particular dataset, usually τ � c and 0.01 < γ < 0.1.
Still and all, the performance of those parameter settings
outperforms the baseline 73.33% (the gray dotted line) by at
least 0.13%. Furthermore, the effectiveness of parameter λ

(the green one) for the Entropy loss is also drawn in Fig. 5.
We see that the accuracy-λ curve of the Entropy is jittering
up and down around the baseline. This observation is con-
sistent with the discussion in Sect. 3.3 of the article, where
we provide a detailed explanation of why the Entropy func-
tion regularity is not suitable for the optimization process in
supervised learning.
Tolerance to Noisy Labels
We present how ADR reacts to noisy labels in classification.
Generally, training with ADRwill prevent the model to over-
fit noisy distribution.Weconducted the experiments using the

same settings as Wang et al. (2019b). A certain number of
samples are randomly selected and flipped to the uncorrected
labels before training. TheTop-1 recognition accuracy results
under four noisy rates (20%, 40%, 60%, 80%) are reported
in Table 4. In addition, the training and test accuracy vs. iter-
ation is visualized in Fig. 6. When an added noise rate is less
than 50%, our ADR could obtain a more stable improvement
than the CE loss. Note when noise rates exceed 20% or 40%,
CE causes training overfitting as the training and test accu-
racy curves are intersected, and its training accuracy exceeds
80% and 60% respectively. In contrast, the proposed ADR
enables the model to be trained robustly.

However, when adding a high noise rate (N R > 50%), the
model with CE loss would be under-fitted as more than half
training samples are useless or distracting. ADR also fails
with heavy noise. After all, in heavy noise conditions, the
calibration step (confidence-based normalization) in ADR is
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Table 5 Face datasets for training and validation

Datasets #Identity #Image

LFW (Huang et al., 2008) 5749 13233

CASIA (Yi et al., 2014) 10K 0.5M

CFP-FP/FF (Sengupta et al., 2016) 500 7000

AgeDB-30 (Moschoglou et al., 2017) 568 16488

CALFW (Zheng et al., 2017) 5749 12174

CPLFW (Zheng & Deng, 2018) 5749 11652

meaningless as there barely exists reliable semantically sim-
ilar classes. It is worth noting that at 60% noise rates, our
ADR still plays a role in counteracting the crossover phe-
nomenon. We think that the 0.2% or 0.45% boost from ADR
when noise is greater than 50% may be some sort of random
fluctuation in the case of poor CE performance. Therefore,
when the proportion of noisy samples increases, it becomes
necessary to reduce the hyperparameter γ .

4.2 Face Verification

ADRworks fine in face verification. We utilize the same set-
tings in Arcface for the following experiments1. The ADR
was embedded into the architecture of ResNet18. For model
training, we employ the commonly used web-collected out-
side dataset CASIA (Yi et al., 2014) (excluding the images
of identities appearing in the test set) which has∼ 0.5M face
images belonging to ∼ 10K different individuals.

For the validation, six datasets including LFW, CALFW,
CFP-FF, CPLFW, CFP-FP, and AgeDb-30 are utilized to
evaluate the performance. LFW includes ∼ 13K web-
collected images from ∼ 5K different identities, with
limited variations in pose, age, expression, and illuminations.
CPLFW was collected from LFW with a larger pose gap.
Similar to CPLFW, CALFW was selected from LFW with
higher variations of age. CFP consists of collected images
of celebrities in frontal and profile views, which has two
evaluation protocols consisting of CFP-Frontal-Frontal and
CFP-Frontal-Profile which is a more challenging protocol
with around a 90◦ pose gap within positive pairs. AgeDB-30,
a “in-the-wild” dataset, contains manually annotated images.
In this paper, we employ the evaluation protocol with a 30-
year gap. Table 5 lists the details of these datasets.

4.2.1 Ablation Study

Table 6 presents the results of ADRon such common datasets
as LFW, CALFW, CFP-FF, CPLFW, CFP-FP, and AgeDb-
30. For LFW and CFP-FP, ADR can boost the accuracy

1 The InsightFace project: https://github.com/deepinsight/insightface.
git

with any γ, τ settings, raising by 0.017%−0.214% com-
pared with both baselines. One can see that ADR can boost
the performance over the baselines on CALFW (0.117% and
0.234% respectively). And ADR can further reduce the error
rates from ≈ 0.6% to ≈ 0.5% on CFP-FF. Specifically,
ADR can outperform both the baselines by obvious mar-
gins (0.683% on AgeDb-30 and 0.700% on the challenging
CPLFW respectively).

4.2.2 Comparison with SOTA

We evaluate ADR on serveral state-of-the-art (SoTA) face
verification methods, including TigthROI (Xu et al., 2021b),
(R+D)BM (Cao et al., 2020) and FAPSC (Xu et al., 2021b)
etc. They are introduced in Table 6. The performance of
our ADR is superior to all other losses on LFW, CALFW,
CFP-FF/FP, and the average accuracy of those 6 datasets. In
conclusion, our ADR can further improve current SOTA face
verification results notably.

4.3 Facial Emotion Recognition

The long-tailed FER2013 dataset contains ∼ 36K images.
It has 7 emotion classes, i.e., anger, neutral, disgust, fear,
happiness, sadness, and surprise. We employ a customized
VGGNet (Khaireddin&Chen, 2021) with an SGD optimizer
to conduct experiments, following the official protocols in
Goodfellow et al. (2013). In practice, we use the ReduceL-
ROnPlateau2 against other schedulers to obtain a robust
baseline as reported in Table 7. Our ADR is superior to both
the baselines of the test and validation sets by 0.6% and
0.57% respectively.

As shown in Fig. 7a, we observe that the model tuned with
the vanilla CE overfits the training data, as the training loss
continues to decline, while the validation loss is increasing.
In our option, to further reduce the training loss, CE focuses
on fitting well-classified samples. That is, the score of class
label y = 1 in the validation set is reduced but still gives
the correct prediction results. In contrast, the proposed ADR
continues to decline until being stable in both training and
validation sets. Note that the training loss of the ADR is
larger than CE, but the validation accuracy is greater than it.
It empirically validates our ADR focuses on fitting the hard
samples (which are misclassified early) and can alleviate the
overfitting in training.

4.4 Action Recognition

To verify the effectiveness of the proposed ADR for the
sequence-based action recognition (Kong & Fu, 2022), we

2 Pytorch 1.9.0 documentation: https://pytorch.org/docs/stable/
_modules/torch/optim/lr_scheduler.html
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Table 6 Face Verification performance of different methods on LFW, CALFW, CPLFW, AgeDB-30, CFP-FP and CFP-FF datasets with ResNet18

Method Pub.’Year LFW% CALFW% CPLFW% AgeDB-30% CFP-FF% CFP-FP% Average%

CircleLoss (Sun et al., 2020) CVPR’20 95.167† 84.450† 73.817† 80.867† 96.071† 78.557† 84.822

RBM (Cao et al., 2020) CVPR’20 99.10‡ 91.00‡ 87.10‡ 91.30‡ - - 92.125

DBM (Cao et al., 2020) CVPR’20 99.20‡ 92.00‡ 87.30‡ 91.90‡ - - 92.600

R&D-BM (Cao et al., 2020) CVPR’20 99.30‡ 92.50‡ 87.60‡ 92.10‡ - - 92.875

Arcface (Deng et al., 2019) CVPR’19 99.10∗ 89.05∗ 78.43∗ 93.18∗ – – 89.940

MFR (Guo et al., 2020) CVPR’20 99.12∗ 89.45∗ 79.22∗ 93.30∗ – – 90.273

TigthROI (Xu et al., 2021b) AAAI’21 99.02∗ 88.78∗ 79.30∗ 93.73∗ – – 90.208

SuperROI (Xu et al., 2021b) AAAI’21 99.18∗ 88.80∗ 79.22∗ 93.38∗ – – 90.145

FAPSC (Xu et al., 2021b) AAAI’21 99.20∗ 89.47∗ 80.28∗ 94.02∗ - - 90.743

Cosface (Wang et al., 2018) CVPR’18 99.100 93.033 86.783 93.167 99.429 92.871 93.021

w/ ADR - 99.300 93.267 87.483 93.750 99.529 93.057 93.450

Arcface (Deng et al., 2019) CVPR’19 99.200 93.300 86.833 93.267 99.414 93.343 93.150

w/ ADR - 99.283 93.417 87.050 93.950 99.529 93.557 93.425

‡ and ∗ denote the results reported in Cao et al. (2020) and Xu et al. (2021b), respectively
† denotes the result of our own replication using the Arcface’s codebase, following the experimental setup of the circle loss as outlined in Sun et al.
(2020)

Table 7 Recognition accuracy of test and validation data on FER2013
dataset

Method Test % Validation %

CE loss 72.12 73.82

CE+ADR 72.72 (0.60 ↑) 74.39 (0.57 ↑)

employed the same experiment settings of ResNet3D-34 (Ji
et al., 2021) (a Spatio-temporal network). TheSGDoptimizer
with fixed momentum of 0.9 and weight decay of 10−5 was
utilized for training. We set the LR at 0.01, and it decreases
to one-tenth times every 20 epochs.

We apply theNTURGB+Ddataset as a benchmark,which
consists of 60 classes and contains 56880 action sequences
captured with three cameras from different views. And we

Table 8 Recognition accuracy of cross-subject and cross-view evalua-
tions on NTU RGB+D

Method X-Sub % X-View %

CE loss 87.87 90.82

CE+ADR 88.56 (0.69 ↑) 91.37 (0.55 ↑)

follow the cross-subject (X-Sub) and cross-view (X-View)
protocols introducedbyShahroudyet al. (2016) to conduct all
experiments. The results are reported inTable 8, for the cross-
subject, our ADR yields an obvious improvement over the
softmax CE loss (0.69%). Additionally, the ADR achieves a
noteworthy increase over the softmax CE loss in the proto-
col of cross-view (0.55%).One can observe that the proposed

Fig. 7 Recognition loss values and accuracy vs. epoch on FER2013 with different methods. See (a), the loss value of ADR decreases rapidly during
the first 50 epochs and then gets convergence gradually on the long-tailed dataset
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Fig. 8 Qualitative results of the
baseline and ours for
unsupervised image
segmentation on BSDS500
(Arbelaez et al., 2010) and
PASCAL VOC 2012
(Everingham et al., 2015). The
original images are in the first
row, the second consists of the
ground truth images, the third
contains the results of
“superpixels” (Kanezaki, 2018),
the fourth shows the results of
continuity loss (Kim et al.,
2020), the fifth presents the
results of CE, and our
segmentation results are in the
last row. We refer to Kim et al.
(2020) to calculate the mIoU
metrics and report it below the
picture. Different segments are
shown in different colors

ADR can yield consistent boosts in the Spatiotemporal archi-
tectures.

4.5 Unsupervised Image Segmentation

As mentioned in Sect. 1, our ADR could be applied to sev-
eral unsupervised learning tasks. Herein, we conduct an
exploration namely unsupervised image segmentation by fol-
lowing a pioneer work (Kim et al., 2020). For this task, γ is
chosen from [0.1, 0.5] and τ is set as {7, 9}. Figure8 presents
the qualitative comparison between our ADR and the other

methods. Both in the woof (second column) and waterfowl
(third column) picture, more precise segments with various
colors and textures are detected by our ADR. More specif-
ically, compared to other methods, the model trained with
ADR demonstrates the ability to group pixels within woof
and waterfowl objects into a single category.
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5 Conclusion

In this paper, we propose a practical regularization named
adaptive discriminative regularization (ADR) for visual clas-
sification, verified on multiple datasets with a spectrum of
the model architecture. It is built upon a hypothesis that we
can leverage the data with similar semantics to calibrate the
predicted likelihood in the target class and encourage it to
be assertive, as data (e.g. images or videos) collected in the
real world are not ideally independent of each other. Regard-
ing this, ADR considers the intervention timing and gradient
magnitude, exactly suitable for supervised visual classifica-
tion tasks. We give a general form and a simple solution
to our method, and those qualities make it compatible with
a wide range of visual applications. Moreover, we demon-
strate its availability and flexibility by conducting 5 different
visual classification tasks on over 10 benchmarks. It also
has potential value in objective function designing and other
visual applications (e.g., collaborative learning (Du et al.,
2022), multi-label learning (Wu et al., 2018), and clustering
(Castellano & Vessio, 2022)).

Appendix

Our adaptive discriminative regularization loss for one sam-
ple can be written as

Ld(ỹi ) =
τ∏

j=1

1√
2πϕi

exp

{
− 1

2ϕi
ŷ2i j

}
.

=
τ∏

j=1

F j (ŷi j ),

(10)

where ϕi is a function of ỹi , ŷi is generated by a non-linear
function TopK(ỹi ). The function F j (ŷi j ) in Eq. (10) can be
denoted as

F j (ŷi j ) = H(ŷi j )E(ŷi j ), (11)

where H(ŷi j ) is called the base measure function “ 1√
2πϕi

",

E(ŷi j ) is named the exponential term “exp{− 1
2ϕi

ŷ2i j }".
In the backward propagation, ∂Ld (ỹi )

∂ ỹi
can be calculated

with

∂Ld(ỹi )

∂ ỹi
=

τ∑

j=1

⎡

⎣F ′
j (ŷi j )

τ∏

m �= j

Fm(ŷi j )

⎤

⎦ , (12)

The derivative function F ′
j (ŷi j ) in Eq. (12) can be computed

with

F ′
j (ŷi j ) = H′(ŷi j )E(ŷi j ) + E ′(ŷi j )H(ŷi j ), (13)

In Eq.13, H′(ŷi j ) and E ′(ŷi j ) can be calculated by

∂H(ŷi j )

∂ ŷi j
= 1√

2π

(
−1

2
ϕ

− 3
2

i

)
ϕ′
i j

= − ϕ′
i j

2ϕi
H(ŷi j ),

∂E(ŷi j )

∂ ŷi j
=

[−ŷ2i j
2ϕi

]′
E(ŷi j )

=
[
ŷ2i jϕ

′
i j − 2 ŷi jϕi

2ϕ2
i

]
E(ŷi j ).

(14)

Putting Eq.14 into Eq. (13), F ′
j (ŷi j ) can be rewritten as

F ′
j (ŷi j ) =

[
ŷ2i jϕ

′
i j − 2 ŷi jϕi

2ϕ2
i

− ϕ′
i j

2ϕi

]
F j (ŷi j )

=
[
ŷ2i jϕ

′
i j − 2 ŷi jϕi − ϕiϕ

′
i j

2ϕ2
i

]
F j (ŷi j ),

(15)

Then, putting Eq. (15) into Eq. (12), ∂Ld (ỹi )
∂ ỹi

can be rewritten
as

∂Ld(ỹi )

∂ ỹi
=

τ∑

j=1

⎡

⎣F ′
j (ŷi j )

τ∏

m �= j
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⎤
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⎡
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ŷ2i jϕ

′
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)
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]
,

(16)

where ϕ′
i is the partial derivative function ϕi with respect to

ŷi j . We refer to Sen et al. (2005) and Guariglia (2021), ϕ′
i

can be computed with

∂ϕi

∂ ŷi j
= −ϕi + log(ŷi j )

1 − ŷi j
. (17)

We also give the derivative function of entropy L′
e(p) for

binary classification. It can be calculated by

∂Le(p)

∂ p
= − [log(p) − log(1 − p)]

= log

(
1 − p

p

)
.

(18)
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