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Abstract—Occluded person re-identification (ReID) is a chal-
lenging task due to more background noises and incomplete
foreground information. Although existing human parsing-based
ReID methods can tackle this problem with semantic alignment at
the finest pixel level, their performance is heavily affected by the
human parsing model. Most supervised methods propose to train
an extra human parsing model aside from the ReID model with
cross-domain human parts annotation, suffering from expensive
annotation cost and domain gap; Unsupervised methods integrate
a feature clustering-based human parsing process into the ReID
model, but lacking supervision signals brings less satisfactory
segmentation results. In this paper, we argue that the pre-
existing information in the ReID training dataset can be directly
used as supervision signals to train the human parsing model
without any extra annotation. By integrating a weakly supervised
human co-parsing network into the ReID network, we propose a
novel framework that exploits shared information across different
images of the same pedestrian, called the Human Co-parsing
Guided Alignment (HCGA) framework. Specifically, the human
co-parsing network is weakly supervised by three consistency
criteria, namely global semantics, local space, and background.
By feeding the semantic information and deep features from
the person ReID network into the guided alignment module,
features of the foreground and human parts can then be obtained
for effective occluded person ReID. Experiment results on two
occluded and two holistic datasets demonstrate the superiority
of our method. Especially on Occluded-DukeMTMC, it achieves
70.2% Rank-1 accuracy and 57.5% mAP.

Index Terms—person re-identification; image co-segmentation;
human parsing.

I. INTRODUCTION

PERSON re-identification [1] (ReID) aims to match a
target pedestrian with non-overlapping cameras. In recent

years, person ReID has been a research focus due to its
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Fig. 1. Different supervised ways of acquiring semantic information in
ReID images. (a) Supervised pixel-level alignment-based method: using a
segmentation model supervised by pixel-wise labels of human annotation;
(b) Unsupervised pixel-level alignment-based method: using the unsupervised
clustering method with ReID feature map as input; (c) Weakly-supervised
Human Co-parsing: Our method uses the pixel vicinity, semantic consistency,
identity label as weakly supervised signals to train the segmentation model.

potential application values in intelligent security and video
surveillance [2]. However, most person ReID methods focus
on holistic person ReID and ignore the occlusion problem.
Consequently, directly matching two occluded pedestrian im-
ages without alignment can dramatically increase the difficulty
of person ReID.

To solve the occlusion problem, various alignment-based
methods have been proposed, which can be roughly divided
into part-level [3], [4], [5], key point-level [6], [7], [8] and
pixel-level [9], [10], [11], [12], [13]. Although existing pixel-
level ReID methods can tackle this problem with semantic
alignment at the finest level, those methods do not significantly
outperform other alignment methods. This is because the
performance of the pixel-level methods heavily relies on the
human part segmentation model (or human parsing model). As
shown in Figure 1(a) and (b), according to the supervised way
of acquiring semantic information in ReID images, the existing
pixel-level alignment methods can be divided into two types:
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supervised methods and unsupervised methods.
The supervised pixel-level alignment-based methods use the

pose estimation or human parsing model supervised by human
annotation to obtain the pixel-level alignment information.
For example, Huang et al. [10] use a human parsing model
trained on COCO [14] to obtain pseudo pixel-wise labels
of ReID images. Based on the pseudo-pixel-wise labels, a
multi-task framework is proposed to train person ReID and
human parsing in a shared backbone. However, because of
the high cost of pixel-wise annotation, only segmentation
models trained in other domains can be used, resulting in
inaccurate segmentation results. Besides, when multiple pedes-
trians appear in an image, the supervised pixel-level alignment-
based methods extract the pixel-level alignment information of
irrelevant pedestrians as well, which may make the ReID task
more difficult.

Different from the above supervised methods, the unsuper-
vised pixel-level alignment-based methods use the unsuper-
vised clustering method with the ReID feature map as input.
For example, the Identity-guided Semantic Parsing [13] (ISP)
designs the cascaded clustering on feature maps to generate
pseudo-pixel-wise labels where cascade clustering consists of
two k-means classifiers. However, using traditional clustering
methods to obtain semantic information is sub-optimal due to
lacking any supervision signals.

Instead of using extra cross-domain annotations, we train the
human parsing model for ReID in a weakly supervised fashion.
Inspired by co-part segmentation [15], we consider three
characteristics of good human parsing and encode that prior
knowledge into the loss function to train a weakly supervised
segmentation network on ReID data. Specifically, as shown
in Figure 1(c), we consider three desirable constraints of
human parsing: (1) Local space consistency: Pixels in local
space should be predicted as the same label. (2) Semantic
consistency: Pixels with the same semantic in different images
should be predicted as the same label. (3) Background group:
The background of all images should be grouped into the same
label.

We argue that the information that already exists in the
ReID dataset can be utilized to achieve the above consis-
tency constraint. For local space consistency, we assume that
neighboring pixels should have the same semantic label. For
semantic consistency, we take advantage of the information
that the same ID has a similar appearance in different ReID
images. For the background group, we utilize intra-camera
view similarity in ReID images to separate the foreground
from the background. The above information has not been
fully exploited in the previous works. Since the proposed
method cooperatively parses ReID images of the same ID
together, we call our segmentation network Human Co-parsing
Network.

The proposed method is a multi-task framework that jointly
trains a human co-parsing network (HCNet) and a person ReID
network (PRNet). 1) HCNet: a set of images with the same
ID are firstly fed as a batch into an encoder and a decoder
to generate prediction vectors. To satisfy the criteria, three
consistency losses are designed to maximize the similarity
of prediction vectors at three different levels. After training,

common pedestrians and their personal belongings are sepa-
rated from the background. However, the categories denoted
by the predicted labels are unknown. To solve the problem, we
design a center prior label reassignment (CPLR) to translate
the unique predicted labels into the background and human
parts. Finally, the co-parsing result is used as the pseudo-GT
for the human parsing head of the person ReID network. When
compared to recent pixel-level alignment-based methods [9],
[10], [13], human co-parsing is relatively robust to occlusion.
Both occluded objects and irrelevant pedestrians usually only
occur in one image or one camera view and are not shared
objects in all images. Therefore, human co-parsing treats the
occluded objects and irrelevant pedestrians as background.
2) PRNet shares the backbone with HCNet and contains a
human parsing head and an aligned person ReID head. The
segmentation results predicted by HCNet are used as the
pseudo-ground-truth to supervise the human parsing head. To
refine the co-parsing results, we design Guided Alignment
Module (GAM) by reducing the uncertainty of the segmenta-
tion prediction. On the one hand, GAM ignores pixel features
with low confidence during training. On the other hand, GAM
enhances pixel features with high confidence during testing.

The main contributions of this paper are summarized as
follows:

1) We propose a novel Human Co-parsing Guided Align-
ment (HCGA) framework that alternately trains the
human co-parsing network and the ReID network, where
the human co-paring network is trained in a weakly
supervised manner to obtain paring results without any
extra annotation.

2) For the human co-paring network, we design three
novel loss functions, namely local space consistency,
semantic consistency, and background group, that satisfy
the desirable constraint of human parsing.

3) For the ReID network, we propose a guided alignment
module that reduces the uncertainty of the parsing pre-
diction by ignoring pixel features with low confidence
in the foreground during training and enhancing pixel
features with high confidence during testing.

4) We conduct extensive experiments to demonstrate that
the proposed method achieves superior performance on
two occluded datasets—Occluded-DukeMTMC [16] and
Occluded-REID [17], and competitive performance on
two holistic datasets—Market-1501 [18] and CUHK03-
NP [19], [20].

The remainder of the paper is organized as follows: In
Section II, we review related work on person ReID and deep
clustering methods. Section III details the proposed human
co-parsing guided alignment framework. Sections IV and V
present the comparison and evaluation of experimental results
and visualization. Finally, conclusions are drawn in Section
VI.

II. RELATED WORK

The proposed HCGA focuses on person ReID, image co-
segmentation, and deep clustering. Therefore, we briefly re-
view the related work in this section.
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A. Person Re-identification

Deep learning has achieved significant success in the task
of person re-identification in recent years. Deep learning-
based approaches integrate representation learning and metric
learning into a unified network framework for optimization.
In the existing deep learning-based methods, attention-based
and part-level alignment-based methods are the two dominant
approaches. The part-level alignment-based methods [4], [21],
[3], [22] divide the pedestrian image into several regions
or locate discriminative parts from the human body; The
attention-based methods [23], [24], [25] guide the model to
pay more attention to discriminative regions. Besides the above
traditional directions, unsupervised domain adaptation, cross-
modal and label noise learning have also attracted the attention
of researchers. For example, Zhou et al. [26] propose a multi-
feature fusion with adaptive graph learning for unsupervised
Re-ID. Wang et al. [27] propose Attentive Waveblock (AWB)
that can be integrated into the dual networks of mutual learning
for depressing noise in the pseudo-labels. Ye et al. [28]
propose a novel dynamic tri-level relation mining (DTRM) for
visible infrared re-identification. To learn a robust ReID model,
an online co-refining (CORE) [29] framework is proposed to
distill the knowledge between different works. Most of those
works have focused on the holistic ReID problem and do not
consider the occluded problem.

Recently, some works explore the Vision Transformer for
the ReID task. He et al. [30] first exploit pure Transformer
for the ReID task and propose a Transformer-based Object
Re-identification (TransReID) method. TransReID introduces
the side information embedding to encode different side in-
formation and proposes the jigsaw patches module to utilize
the stripe-based idea. Zhu et al. [31] propose an online Auto-
Aligned Transformer (AAformer) to adaptive assign patch
embedding of the same semantics to the same part token in
the running time. AAformer learns part features and achieves
part alignment by self-attention. Compared with the existing
CNN-based methods, the transformer-based method is more
robust to occlusion.

B. Occluded Person Re-identification

The occluded problem often occurs in real scenes. For
example, the target pedestrian may be occluded by irrelevant
pedestrians in crowded scenes. Zhuo et al. [17] firstly defines
the occluded person ReID problem and proposes an Atten-
tion Framework of Person Body (AFPB) for the occluded
problem. Recently, some pose estimation and human parsing-
based methods are proposed to cope with the occluded ReID
problem. Miao et al. [16] utilize a pose estimation model
to extract useful information from the occluded images and
guide the model to focus on non-occluded regions. Gao et
al. [6] propose a pose-guide visible part matching method to
fuse local features with visual scores. Wang et al. [7] firstly
extract semantic local features by a pose estimation model
and propose an adaptive direction graph convolution layers to
learn relation and a cross-graph embedded-alignment layer to
predict similarity score. Zhao et al. [32] propose a novel incre-
mental generation of occlusion against suppression (IGOAS)

network. IGOAS first generates easy-to-hard occlusion data
by the incremental generation of occlusion blocks, and then
suppresses the generated occlusion regions by adversarial sup-
pression branches. Li et al. [33] first explores the transformer
encoder-decoder structure for Occluded ReID and proposes a
Part-Aware Transformer (PATrans) to learn part prototypes.
PATrans designs part diversity and part discriminability to
achieve robust human part discovery. Jia et al. [34] propose a
disentangled representation learning network (DRL-Net) that
handles occluded re-ID without requiring strict person image
alignment.

However, most of those occluded ReID methods require
extra annotation for fine-grained alignment. Besides, the per-
formance of the occluded person ReID methods on holistic
datasets has been relatively lower performance. The holistic
and occluded person ReID tasks are not contradictory to each
other. Different from the above occluded ReID methods, our
proposed method is valid for both tasks. Our previous work
IGOAS used data augmentation and attention mechanisms to
address the occlusion problem. Different from IGOAS, this
work is motivated to address the lack of manually annotated
semantic information in existing ReID datasets. In this paper,
we propose a weakly supervised approach to obtain semantic
information in ReID images to guide ReID network at pixel-
level alignment.

C. Deep clustering
Deep clustering has progressed in recent years due to the

powerful feature extraction capabilities of deep convolutional
neural networks. Ji et al. [35] propose an invariant information
clustering to maximize the mutual information of sample pairs.
Kim et al. [36] propose an unsupervised image segmentation
method based on differentiable feature clustering. The method
exploits spatial continuity to replace the constraints of fixed
segment boundaries, such as over-segmentation. Chen et al.
[37] propose a novel method that exploits semi-supervised
learning for the imbalanced problem. Different from the above
deep clustering methods, Li et al. [38] use the label as a special
representation and propose contrastive clustering (CC) based
on contrastive learning. CC maximizes the similarity of sample
pairs at the instance level and the cluster level. Inspired by
the above works, we train an image segmentation network by
jointly maximizing the similarity of predicted vectors at three
different levels.

D. Image Co-segmentation
To the best of our knowledge, the concept related to co-

parsing was first introduced in clothing co-parsing [39]. Some
other problems that are similar to Human Co-parsing are
Instance Co-segmentation [40] and Co-part Segmentation[15].
The problem to be solved by Co-part Segmentation is part
segmentation between different object instances for collections
of images with only one object class. Instance co-segmentation
aims to identify all instances of objects in a set of images that
together contain a specific class and segment each instance.
Different from the above image co-segmentation task, human
co-parsing is the ID-level part co-segmentation task rather than
the class-level.
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Fig. 2. The flowchart of the proposed HCGA framework. (a) Human Co-parsing network (HCNet). (b) Person ReID network (PRNet). The proposed HCGA
consists of HCNet and PRNet. The two sub-networks share the backbone and are trained alternately until optimized to the best. Specifically, PRNet refines the
parameters to make the difference between features with different semantics greater. HCNet yields better segmentation results based on the refined features
to guide PRNet alignment at the pixel level.

III. HUMAN CO-PARSING GUIDED ALIGNMENT
FRAMEWORK

In this section, we first describe the overall framework.
Second, we describe in detail the Human Co-Parsing network
architecture and three proposed consistency losses. Third, we
describe the person ReID network and the structure of the
Guided alignment module. Finally, inference processing is
described.

A. Overall Framework

As shown in Fig.2, the proposed HCGA framework con-
sists of two sub-networks and the encoder of HCNet is the
backbone of the PRNet. Each epoch of the training phase of
HCGA consists of two steps: (1) a set of images of the same
ID in the training set is fed as a batch into the HCNet. In
the training phase of HCNet, the parameters of the Encoder
are not updated. For each ID of the training set, we train a
Decoder separately and output co-parsing results for all images
of that ID at the end of training. (2) The co-parsing results
are used as the pseudo-GT of the human parsing head of the
PRNet. In the training, all parameters of PRNet are updated
by backpropagation.

In the early stage of training, the segmentation effect of HC-
Net is not good. As PRNet keeps optimizing the parameters in
Backbone, the difference between pixel features of foreground
and background increases. Therefore, HCNet generates better
segmentation results with iterative training. Guided by the

semantic information obtained from HCNet, PRNet is robust
to occlusion.

B. Human Co-parsing Network

Before elaborating on HCNet, the problem to be solved by
the human co-parsing network is described as follows. Let
- = {�: (8, 9) ∈ R3}#

:=1 be a set of images with same ID
where # denotes the number of images and 8 and 9 denote
the position of the pixel in :th image �. Let � : R3 → R@ be
an encoder for feature extraction and {+: (8, 9) ∈ R@}#:=1 be the
@-dimensional feature vectors of the pixel in row 8 and column
9 of the :th image. The output that the segmentation network
requires is pixel-wise labels {.: (8, 9) ∈ N}#:=1. In the labels,
0 indicates the background and 1 to � − 1 indicates human
body parts and personal belongings and � indicates the total
number of categories in multiple images. Let � : R@ → N
denotes a decoder for mapping the feature vectors to labels.
Collectively, the problem can be formulated as follows:

.: (8, 9) = � (� ({�: (8, 9)}#:=1)) (1)

The human co-parsing network aims to solve the weakly
supervised image segmentation problem. Only {�: (8, 9)}#:=1
is known in Eq. (1) while �, � , and labels {.: (8, 9)}#:=1 are
unknown, thus solving this equation is challenging. To achieve
co-parsing, we design a deep convolutional neural network
with an encoder-decoder structure and three consistency losses
to weakly supervise the segmentation network.
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Network Architecture. HCNet is shown in Figure 2(a).
We use a backbone as an encoder and design a decoder
consisting of several convolutional layers. Three loss functions
are designed to satisfy the criteria of parsing. Finally, the
central prior-based label reassignment (CPLR) transforms the
predicted labels into the background and human parts. The
pixel values of the image set - are first normalized to
[0,1] and then transported to the encoder. The parameters
in the encoder are fixed when extracting the feature vectors
{+: (8, 9)}#:=1, and the encoder is trained only in the Person
ReID network. The feature vectors {+: (8, 9)}#:=1 are then fed
into a decoder. The decoder consists of four basic blocks that
are composed of a convolutional layer, a batch normalization
layer [41], and a ReLU activation function. The last basic
block contains a convolutional layer with � ′(� ′ >> �)
convolutional kernels of size 1×1 and a BN function. Finally,
the classification result of each pixel is output after the argmax
function. Notably, the network output predicted labels are
{. ′: (8, 9) ∈ {0, 1, · · · � ′ − 1}}#

:=1.
Local space consistency loss. As shown in Figure 3(a),

when focusing only on one pedestrian image and its corre-
sponding human parsing result, it is observed that a pixel has
the same label as its neighboring pixels in the local space, i.e.,
local spatial consistency. However, how to guarantee the local
space consistency of segmentation results. The LBP operator
[42] is defined as the comparison of the grayscale values of 8
adjacent pixels within a 3 × 3 window, with the center pixel
of the window as the threshold. Inspired by the LBP operator
[42], we maximize the similarity of the prediction vectors of
the center pixel and the neighboring pixels within a ' × '
window. In short, we propose the local space consistency loss
which can be formulated as:

L;>20; =
(∑
B=1
‖H2 − HB ‖ ? (2)

where H2 ∈ R1×1×�′ is the prediction vector of the center pixel,
HB (B = 1, · · · , () is the prediction vector of neighboring pixels
from a '×' neighborhood, and ‖ · ‖ ? is ?-norm. In this paper,
' is set to 3.

Semantic consistency loss. A human can easily annotate
pixels with the same semantics of different images as the
same label, but it is difficult for the network to learn this
semantic consistency without pixel-wise labels. As shown in
Figure 3(b), the arms or legs of different ids have the same

(a) Images of same ID

(b)

(c)

Fig. 4. Visualization of the co-paring results of HCNet trained directly on
RGB images with the same ID. (a) Images of the same ID. (b) Co-paring
results when only local consistency loss and semantic loss are used. (c) Co-
paring results when three losses are used.

semantics but different colors and textures, but the human
parts of the same ID have the same color and texture under
different camera views. Therefore, for all images of the same
id, the predicted vectors of pixels with the same semantics in
the pedestrian region are similar and the network assigns the
same label to similar predicted vectors. We assume that pixels
with the same semantic in the pedestrian region are assigned
the same label by the network. Based on the assumption,
we propose the semantic consistency loss to maximize the
similarity of pixels vectors with the same semantic across
images, which can be formulated as:

LB4< = −
"∑
8=1

log(
exp(H?;)∑�′
9=1 exp(H 9 )

) (3)

where " is the number of all pixels in the set of images with
the same id, H is the prediction vector of pixels and ?; is the
pseudo-label obtained by the predicted vector passing through
the argmax function.

Background group loss. Since the background is different
across images, only local consistency loss and semantic con-
sistency loss cannot guarantee that the background pixels are
grouped into one class, as shown in Fig.4 (b). To achieve
it, we mine the shared information in the ReID data. The
lighting and pose of the ReID images with the same ID change
considerably under different camera views. However, the ReID
images are similar in the same camera view except for the
background bias, i.e., intra-camera view similarity. Based on
the intra-camera view similarity, we maximize the similarity
of the prediction vectors of the neighboring images from the
same camera view to eliminate background bias. In short, we
propose a background group (BG) loss that can group the
background pixels into one class. The formulation of BG loss
is shown as follows:

L102: =
#−1∑
:1≠:2

H:1 − H:2


?

(4)
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Fig. 5. Comparison of segmentation results without CPLR and with CPLR

where H: ∈ R�/3×, /3×�
′ (: = 1, · · · , #) is the prediction

vector of :th image with size �×, , :1th and :2th images are
the adjacent images under the same camera view. In this paper,
the possible values of ? are 1 and 2. The background group
loss corrupts the other two consistency losses to some extent.
To reduce this corruption, we designed the training abort
mechanism. In the background group loss, the background
bias provides a larger gradient compared to the pedestrian bias.
After the background is essentially predicted as the same label
by the network, we abort the training (details in section V-B).

CPLR. The weakly-supervised image segmentation net-
work cannot output a specific category represented by each
prediction label. Therefore, label reassignment is required on
the co-parsing results. The CPLR divides the predicted labels
into foreground and background based on prior knowledge
that the foreground is generally in the center of the image
while the background is mostly at the edge. According to the
average height of the pixels of the unique predicted labels, the
CPLR divides the foreground labels into � − 1 human parts.
The segmented image before and after CPLR processing are
shown in Figure 5.

Optimization. At the initiation of network training, the
parameters in the encoder � are initialized with the classifi-
cation model pre-trained in ImageNet, while the parameters
in the mapping function � are initialized with Kaiming
uniform [43]. Since � and � are determined, the predicted
label . ′: (8, 9) can be obtained by forward propagation. The
objective function of HCNet can be formulated as:

L��#4C = LB<4 + _!L;>20; + _�L102: (5)

where _! and _� is the balance weights. During the itera-
tive training process, the number of unique predicted labels
continuously becomes less due to the constraint of Equation
5. Once the number of unique predicted labels is smaller
than the minimum number <8=! , the training process ceases
and the co-parsing results are fed into the CPLR to generate
the final segmentation result. The pseudocode for the weakly
supervised human co-parsing methods is shown in Algorithm
1. Notably, \� is only updated by PRNet.

C. Person ReID network

The PRNet is based on ISP [13]. Using the backbone with
shared weights to extract deep features, the human parsing
head first generates � confidence maps by a convolution layer

Algorithm 1 Weakly Supervised Human Co-parsing

Input: # images with same ID - = {�: (8, 9) ∈ R3}#
:=1, min-

imum number of unique predicted labels <8=! , learning
rate `

Output: Labels {.: (8, 9) ∈ N}#:=1
1: Initialize \� with pre-trained parameters in ImageNet
2: Initialize \� with Kaiming uniform
3: {+: (8, 9)}#:=1 ← � ({�: (8, 9)}#:=1)
4: repeat
5: {. ′: (8, 9)}#:=1 ← � ({+: (8, 9)}#:=1)
6: L��#4C ← LB<4 + _!L;>20; + _�L102:
7: Update \� ← \� − ` m

m\�
L��#4C

8: until Unique({. ′: (8, 9)}#:=1) < <8=!
9: Get the predicted labels on the image boundaries
1>D=30AH

10: ;014;B, ℎ8BCB ← Unique(1>D=30AH, A4CDA=_2>D=CB =

)AD4)
11: for ;014;, ℎ8BC in enumerate(;014;B, ℎ8BCB) do
12: if ℎ8BC > 8<064_?4A8<4C4A/2 then
13: Reassign label to background label 1_;014;B
14: end if
15: end for
16: 5 _;014;B ← set(0;;_;014;B) - set(1_;014;B)
17: Reassign the foreground labels 5 _;014;B to � − 1 human

parts based on the average height
18: return {.: (8, 9)}#:=1 =0

with � convolution kernels of size 1×1 and a softmax function.
The human parsing loss is calculated by the prediction result of
human parsing head and the pseudo-GT generated by HCNet.
In the aligned person ReID head, the confidence map and
depth features are fed into the GAM, whose structure is shown
in Figure 5. The confidence map of the foreground �" 5 >A4 is
obtained by summing 1st to �th confidence map, which can
be expressed by the following equation:

�"�>A4 =

�∑
8=1

�"8 (6)

In GAM, we treat the confidence maps of human parts
�"part differently during training and testing depending on the
confidence (or probability values). Specifically, we suppress
the pixel features with low confidence during training, which
can be formulated as follows:

�"part (4) =
{
4, 4 > 1

C

0, 4 ≤ 1
C

(7)

In inference, we set the high confidence as a threshold to
binary the confidence map.

�"part (4) =
{

1, 4 > 1 − 1
C

0, 4 ≤ 1 − 1
C

(8)

where 4 is the element of confidence map and C ∈ N+
determine the threshold. The image features are multiplied
with a confidence map of foreground �"�>A4 and human
parts �"?0AC at the element level to obtain the features of
foreground ��>A4 and human parts �?0AC .
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Fig. 6. The structure of Guided Alignment Module (GAM)

After the average pooling operation, the features of the
image, foreground, and human parts are used to predict the
ID with three different classifiers. The objective function of
PRNet is formulated as:

L%'#4C = L�<064 + L�>A4 + L%0ACB + _ℎ?L%0AB8=6 (9)

where L�<064 is the triplet loss [44] and cross-entropy loss
with label smoothing [45], L�>A4 and L%0ACB are cross-
entropy loss with label smoothing, LParsing is pixel level cross-
entropy loss, _ℎ? is the balance weight.

D. Inference
In the inference phase, only PRNet is required. Therefore,

HCNet does not add additional consumption during inference.
For a pair of images (G1, G2), we use PRNet to get the whole
image features, foreground, and human parts features of the
image pair. Considering the large noise interference in the
occluded image, we use only the foreground and human parts
features to calculate the similarity of the image pair. For the
distance of human parts features, similar to the recent occluded
ReID methods [16], [10], [13], we only calculate the distance
of shared visible parts.

B8<(G1, G2) =
cos(�G1

�>A4
, �

G2
�>A4
) + 1

2

�−1∑
8=1

%8 cos(�G1
?0AC8

, �
G2
?0AC8
)

1 + (+
(10)

where cos(·) is cosine distance, %8 equal 1 if ?0AC8 is shared
visible part of the image pair else 0, and (+ ≤ � is the number
of share visible parts.

IV. EXPERIMENTS

A. Implementation Details
Datasets. To verify that the proposed HCGA is effective for

occluded and holistic ReID problems, we conduct experiments

Gallery

Query

Occluded-Duke Occlded-REID CUHK-03 Market-1501

Fig. 7. Example images from two occluded ReID datasets and two holistic
ReID datasets

on two holistic and two occluded datasets. The details of
the four data sets are as follows: 1) Occluded-DukeMTMC
[16] consists of 15,618 training images, 2,210 occluded query
images, and 17,661 gallery images. 2) Occluded-REID [17]
contains 1000 holistic images and 1000 occluded images of
200 IDs. Half of Occluded-REID is used for training and the
remaining half for testing. 3) CUHK03-NP [19], [20] uses a
new testing protocol similar to Market-1501, which divides the
dataset into a training set containing 767 pedestrians and a test
set containing 700 pedestrians. 4) Market-1501 [18] contains
12,936 training images, 3368 query images, and 15,913 gallery
images. Example images of the above four datasets are shown
in Fig.7

Training Details. The HCGA framework is implemented by
Pytorch. All images of the training set are resized to 256×128
and augmented with random erasing[46], horizontal flipping,
random cropping, and padding 10 pixels. For the HCNet, each
batch is all images that contain the same ID. We set � ′ to 32
and <8=! to 18. The balance weights _! and _� are 2 and
1. The optimizer of HCNet is SGD with a momentum of 0.9.
The segmentation network is only trained for 32 epochs with a
learning rate of 0.1. For the PRNet, all parameters are trained
for 120 epochs with the Adam optimizer. The learning rate is
3.5e-4 and decays to 0.1 at 40 and 70 epochs. The batch size
is 64 and the balance weight _ℎ? is 0.1.

Evaluation Metrics. Following most works in person ReID,
the Cumulative Matching Characteristic curves (CMC) at
Rank-1 and Rank-5 and the mean average precision (mAP)
are used in this paper to evaluate the performance of different
person ReID methods. All experiments are implemented on
NVIDIA RTX 3090 GPU and in the single query setting.

B. Experimental Results

Results on Occluded Datasets. As shown in Table I and
Table II, we compare our method with 6 holistic person
ReID methods: SVDNet [50], HACNN [24], DSR [47], PCB
[3], SFR [48], MLFN [51], 7 state-of-the-art (SOTA) person
occluded ReID methods: AFPB [17], Teacher-S [52], PGFA
[16], REDA [46], HONet [7], ISP [13], MOS [49] and 3
transformer-based ReID method: PATrans [33], AAFormer
[31], TransReID [30] and DRL-Net [34]. For the Occluded-
Duke dataset, the key point-level alignment-based methods
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TABLE I
COMPARISON WITH STATE-OF-THE-ART CNN-BASED METHODS ON

OCCLUDED-DUKEMTMC (%)

Methods References Rank-1 Rank-5 Rank-10 mAP
HACNN [24] CVPR18 34.4 51.9 59.4 26.0
DSR [47] CVPR18 40.8 56.2 65.2 30.4
PCB [3] ECCV18 42.6 57.1 62.9 33.7
SFR [48] ArXiv18 42.3 60.3 67.3 32.0
PGFA [16] CVPR19 51.4 68.6 74.9 37.3
HONet [7] CVPR20 55.1 - - 43.8
ISP [13] ECCV20 62.8 78.1 82.9 52.3
IGOAS [32] TIP21 60.1 - - 49.4
MOS [49] AAAI21 66.6 - - 55.1
HCGAF/> ��" (Ours) 65.9 80.2 84.3 56.0
HCGA(Ours) 70.2 83.3 87.0 57.5

TABLE II
COMPARISON WITH STATE-OF-THE-ART TRANSFORMER-BASED METHODS

ON OCCLUDED-DUKEMTMC (%)

Methods References Rank-1 Rank-5 Rank-10 mAP
PATrans [33] CVPR21 64.5 - - 53.6
AAFormer [31] ArXiv21 67.0 81.5 86.1 58.2
TransReID [30] ICCV21 66.4 - - 59.2
DRL-Net [34] TMM22 65.0 79.3 83.6 50.8
HCGA(Ours) 70.2 83.3 87.0 57.5

TABLE III
COMPARISON WITH STATE-OF-THE-ART CNN-BASED METHODS ON

OCCLUDED-REID DATASETS (%)

Methods References Rank-1 Rank-5
SVDNet [50] ICCV17 63.1 85.1
MLFN [51] CVPR18 64.7 87.7
PCB [3] ECCV18 66.6 89.2
REDA [46] AAAI20 65.8 87.9
AFPB [10] ICME18 68.1 88.3
Teacher-S [52] Arxiv18 73.7 92.9
ISP [13] ECCV20 86.2 95.4
IGOAS [32] TIP21 81.1 91.6
HCGAF/> ��" (Ours) 87.2 95.6
HCGA(Ours) 88.0 96.0

are about 10% higher than the holistic ReID methods in
Rank-1. The pixel-level alignment-based method ISP [13] has
significantly higher performance than them. Compared with
the second-best CNN-based method MOS, HCGA improved
by 3.6% in Rank-1 and 2.4% in mAP. Compared with the
Transformer-based approach, HCGA shows competitive per-
formance on both Rank-1, Rank-5, and Rank-10. For the
Occluded-ReID dataset, two ReID occluded methods REDA
[46] and AFPB [17] and two holistic methods MLFN [51] and
PCB [3] achieve similar performance. The reason may be that
the Occluded-ReID dataset is relatively small. Similarly, our
method improves 1.8% in Rank-1 compared with the second-
best method ISP. Notably, for a fair comparison, we do not
list the performance of HONet and PGFA on Occluded-ReID.
This is because HONet and PGFA use a different dataset
division method from AFPB, which proposes the Occluded-
REID dataset.

Results on Holistic Datasets. As shown in Table IV, we
compare the proposed method with three part-level alignment-
based methods: PCB+RPP [3], MGN [53], Relation Net[54],
three Key point-level alignment-based methods: PABP [55],

TABLE IV
COMPARISON WITH STATE-OF-ART CNN-BASED METHODS ON

MARKET-1501. THE SECOND ROW IS THE PART-LEVEL
ALIGNMENT-BASED METHODS. THE THIRD ROW IS THE KEY POINT-LEVEL

ALIGNMENT-BASED METHODS. THE FOURTH ROW IS PIXEL-LEVEL
ALIGNMENT-BASED. THE FIFTH ROW IS THE ATTENTION-BASED

METHODS. (%)

Methods References Market-1501
Rank-1 Rank-5 mAP

PCB+RPP [3] ECCV18 92.3 97.5 77.4
MGN [53] MM18 95.7 - 86.9
Relation Net [54] AAAI20 95.2 - 88.9
PABR [55] ECCV18 91.7 96.9 85.0
PGFA [16] ICCV19 91.2 - 76.8
HONet [7] CVPR20 94.2 - 84.9
SPReID [11] CVPR18 92.5 - 81.3
%2-Net [56] ICCV19 95.2 98.2 85.6
FPR [57] CVPR19 95.4 - 86.6
ISP [13] ECCV20 95.3 98.6 88.6
MPN [58] PAMI 22 96.3 - 89.4
MPN* [58] TPAMI 22 96.4 - 90.1
DuATM [59] CVPR18 91.4 97.1 76.6
MHN-6 [23] ICCV19 95.1 98.1 85.0
SCSN [60] CVPR20 95.7 - 88.5
RGA-SC [61] CVPR20 96.1 - 88.4
HCGAF/> ��" (Ours) 95.3 98.4 87.8
HCGA(Ours) 95.2 98.2 88.4

TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS ON CUHK03-NP (%)

Methods Detected Labeled
Rank-1 mAP Rank-1 mAP

PCB+RPP[3] 63.7 57.5 - -
MGN [53] 66.8 66 68 67.4
Relation Net [54] 74.4 69.6 77.9 75.6
MHN-6 [23] 71.7 65.4 77.2 72.4
Auto-ReID [62] 73.3 69.3 77.9 73
ISP[13] 75.2 71.4 76.5 74.1
%2-Net [56] 74.9 68.9 78.3 73.6
BDB+Cut[63] 76.4 73.5 79.4 76.7
DSA-reID[64] 78.2 73.1 78.9 75.2
Pyramid[65] 78.9 74.8 78.9 76.9
MPN[58] 83.4 79.1 85.0 81.1
HCGA(Ours) 76.9 73.2 78.3 75.8

PGFA [16], HONet [7], four pixel-level alignment-based
methods: SPReID [11], %2-Net [56], FPR [57], ISP [13],
four attention-based methods: DuATM [59], MHN-6 [23],
SCSN [60], RGA-SC [61]. The key point-level alignment-
based methods have slightly lower performance than the other
methods on two holistic datasets. These methods that directly
use pre-trained human pose estimation models may generate
similar problems as mentioned in the section I. The pixel-
level alignment-based method MPN [54] achieves the best
performance of 96.4% in Rank-1 on the Market-1501 dataset
and 85.0% Rank-1 on CUHK03-NP labeled dataset. However,
MPN uses two additional types of information: human paring
[66] and human segmentation [12]. Compared with the state-
of-the-art methods in different directions, our method still
achieves comparable performance.

C. Ablation Study

Analysis of the choice of �. The hyperparameter C is
predefined which affects the granularity of the parsing of the
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Fig. 8. Analysis of � for HCGA without GAM on Occluded-Duke dataset.

TABLE VI
ANALYSIS OF THE EFFECT OF SEGMENTATION ON REID PERFORMANCE

(%)

Methods CUHK03-Labeled CUHK03-Detected Occluded-Duke
Rank-1 mAP Rank-1 mAP Rank-1 mAP

Baseline 71.9 68.5 67.6 64.7 57.8 49.7
+Extra info 73.3 71.9 72.2 69.6 61.2 50.2
+ISP 76.5 74.1 75.2 71.4 62.8 52.3
+HCNet 77.4 75.7 74.7 71.9 65.9 56.0

PRNet. Therefore, we analyze the impact of the choice of �
for HCGA without GAM on the ReID task in this part. As
shown in Figure 8, HCGA is robust to �. The best mAP and
good Rank-1 of Occluded-Duke are obtained when the value
of � is 4. It is reasonable to divide pedestrians into three parts
because the main features of pedestrians are the head, upper
body, and lower body. Therefore, we choose � = 4 for all
datasets.

Analysis of the effect of segmentation on ReID perfor-
mance. We analyze the effect of segmentation on ReID perfor-
mance in this part. For the comparison with similar methods,
we set the HRNet-W32 [67] as the baseline model following
the ISP [13]. "+Extra info" denotes using human parsing result
generated by a pre-trained human parsing model SCHP [68]
as the pseudo-GT of the human parsing part. "+ISP" denotes
using the clustering result generated by cascaded clustering
[13] as the pseudo-GT. "+HCNet" denotes using the co-parsing
result generated by HCNet as the pseudo-GT. As shown in
Table VI, the cascaded clustering that uses the traditional
clustering algorithm to classify the pixels of all images of
the same ID is superior to the direct use of extra semantic
information. Human Co-parsing, learning three constraints, has
the highest performance in both datasets.

Analysis of the loss function. In this part, we analyze
the three consistency losses. As shown in Table VII, when
using only LB4<, our method drops 4.3% in Rank-1 and 3.1%
in mAP on Occluded-Duke datasets. When using LB4< and
L;>20; , our method drops 2.6% in Rank-1 and 3.0% in mAP on
Occluded-Duke datasets. Similarly, there is more performance
degradation on the Occluded-Duke dataset when LB4< and
L102: are used. And on the holistic dataset DukeMTMC-reID,
there is less performance degradation. One possible reason is
that for the holistic dataset, the distance of features of the
entire image is calculated besides the foreground features and
shared-visible human parts features. The experimental result
shows that optimizing three consistency losses simultaneously
leads to better performance.

TABLE VII
ANALYSIS OF THE LOSS FUNCTION (%)

LB4< L;>20; L102:
Occluded-Duke
Rank-1 mAP

X × × 61.6 52.9
X X × 63.3 53.0
X × X 62.2 52.3
X X X 65.9 56.0

TABLE VIII
ANALYSIS OF DIFFERENT FEATURE AND THE THRESHOLD ON

OCCLUDED-DUKE. THE SECOND ROW DOES NOT USE GAM (%)

Rank-1 Rank-5 Rank-10 mAP
F 65.7 79.8 84.3 55.2
P 65.3 79.7 83.8 55.6

F+P 65.9 80.2 84.3 56.0
I+F 63.2 77.6 82.1 53.7

I+F+P 64.6 79.0 83.1 54.9
GAM(t=2) 66.2 79.8 84.2 54.7
GAM(t=3) 68.0 82.5 87.2 55.5
GAM(t=4) 70.2 83.3 87.0 57.5

TABLE IX
ANALYSIS OF THE EFFECT OF NEIGHBORHOOD ' ON OCCULDED-DUKE

Neighborhood Rank-1 Rank-5 Rank-10 mAP
' × ' = 5 × 5 68.8 81.8 85.3 51.9
' × ' = 3 × 3 70.2 83.3 87.0 57.5

Analysis of different feature and the threshold under
occlusion. We analyze the effect of using different features
under occlusion. I, F, and P represent image features, fore-
ground features, and human parts features respectively. The
experiments in the second row of Table VIII do not use
GAM, i.e., we directly multiply the confidence of human
parts �"?0AC with the image features to obtain the human
parts features �?0AC without suppressing the low confidence
of pixel features and enhancing the high confidence. First,
using F+P has a better performance compared to using only
F or P. Second, using image features for occluded person
ReID leads to performance degradation compared to using
only foreground features or human parts features, because the
image features contain a large amount of background noise
in the occluded scenes. Finally, for GAM, the threshold of
the confidence map is 0.5 for both training and inference
when t=2, and the performance improves slightly on Rank-1
compared to F+P. When t>2, the performance on Rank-1 rises
significantly. The GAM performs best for high-confidence
feature enhancement while suppressing low confidence.

Analysis of the effect of neighborhood '. In this part, we
analyze the impact of neighborhood '. As shown in Table
IX, when we expand the range of R, the mAP decreases
substantially. Since the local spatial consistency loss operates
on the reduced-dimensional features rather than directly on
the pixels, setting ' = 5 makes the effect of clustering coarse.
Therefore, we simply set ' = 3 to get good results.

Analysis of the Encoder. We analyze the impact of different
methods for the initialization of the encoder. As shown in
Table X, we compare HRNet [67] with ResNet [69]. For
ResNet, we use upsampling layer to linearly interpolate the
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TABLE X
ANALYSIS OF THE ENCODER. "PARAM" DENOTES THE PARAMETERS OF

THE ENCODER AND "FM SIZE" DENOTE THE OUTPUT SIZE OF THE
FEATURE MAP BY THE ENCODER.

Encoder Param FM Size Occluded-Duke CUHK03-Labeled
Rank-1 mAP Rank-1 mAP

HRNet-W32 28.5M 64 × 32 70.2 57.5 78.3 75.8
ResNet50 28.1M 16 × 8 61.0 45.9 70.6 67.4

TABLE XI
AVERAGE TRAINING TIME OF EACH EPOCH FOR TWO SUB-NETWORKS. "S"

DENOTES SECOND.

Networks CUHK03-NP Market Occluded-Duke

HCNet Computer feature 46s 69s 78s
Co-paring 91s 102s 119s
PRNet 258s 323s 390s

16 × 8 feature map to 64 × 32 which is the same as HRNet.
The performance of HRNet is better than that of ResNet,
although the parameters of both are similar. As mentioned by
ISP [13], segmentation or co-paring has a high requirement for
the resolution of the feature maps and needs more semantic
information.

D. Runtimes

We report the running time of each part of the entire
framework in Table XI. For HCNet, we have to compute
the features by inference first, and then send the features to
Decoder for training. Compared with the time to train PRNet,
inferring features is faster. Since all images of each ID are
trained independently, we speed up the co-paring process by
multiple processes. Compared to training only PRNet, it takes
about 1.5 times longer to train the whole framework. However,
the HCNet does not need to be trained to the maximum
epoch, the co-paring effect of the HCNet is good enough when
training to certain epochs, so we can shorten the training time
by stopping the HCNet early.

V. VISUALIZATION

A. Comparison with existing pixel-level alignment-based
methods

For occluded person ReID problems, pedestrian occlusion
is common but difficult to solve, especially for pixel-level
alignment-based methods. Human Co-parsing aims to segment
the common objects from images, while pedestrian occlusion
often occurs in only one camera view, i.e., irrelevant pedes-
trians are not the common objects in multi-camera views.
As shown in Figure 9, HCGA segment only the common
pedestrian from the images compared with SCHP and ISP.
In the case where three pedestrians are occluded from each
other, HCGA also minimizes the interference of irrelevant
pedestrians. Although HCGA enables the network to focus
only on the target pedestrians in the face of occlusion, the
results of Co-paring are rougher at the edge part of the person.
It may be caused by the loss of local spatial consistency, which
forces neighboring pixels to be grouped into one category.
Based on the above phenomenon, we propose the guided
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Fig. 9. Comparison of parsing results with existing pixel-level alignment-
based methods. All images are the same ID.

Fig. 10. Visualization of the clustering process of HCNet trained directly on
RGB images with the same ID. Different colors indicate different clustering
categories, where green and gray are background categories and yellow and
red are foreground categories. The training process is represented from top to
bottom and is best viewed in color .

alignment module to ignore the low-confidence pixel features
to refine the pedestrian rough edges.
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B. Human Co-parsing on RGB Images

To illustrate our approach and verify the generality of
HCNet, we apply HCNet directly on the RGB image rather
than on the feature map extracted by the encoder. The RGB
pixel values of a set of images with the same ID are nor-
malized and then fed into the decoder. Notably, the weights
_! and _� in the objective function are different from that
of training the HCNet for the person ReID task. As shown
in Figure 10, the predicted labels are haphazard at epoch 1.
The background and foreground are gradually separated with
the network convergence. The best results of segmentation
are achieved at epoch 20 when the unique predicted labels
converge to a certain number. If the network continues to
converge, the objective function is close to 0 and all pixels
of images are assigned to one label. This is the reason that
we set the minimum number of unique predicted labels in
Algorithm 1. Due to the direct use of pixel values as input, the
segmentation network may fail when the color and texture of
the background and foreground are similar. Therefore, we use
the deep network with an encoder-decoder structure. Besides,
the proposed method can segment the blue bag in the hand
of the pedestrian from the background compared with Human
parsing.

VI. CONCLUSION

In this work, we propose a Human Co-parsing Guided
Alignment (HCGA) framework for the task of person ReID.
We design local spatial consistency, semantic consistency,
and background group losses to weakly supervise the human
co-parsing network. The parsing result generated by HCNet
guides PRNet to be aligned at the pixel level. PRNet uses
a guided alignment module to reduce the uncertainty of
segmentation prediction. During inference, only PRNet is used
to obtain foreground features and human parts features for
matching. Experimental results show that the proposed frame-
work is effective for both holistic and occlusion person ReID
problems. Moreover, the visualization results demonstrate that
weakly supervised human co-parsing has great potential for
occluded person ReID.
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