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Detecting Overlapped Objects in X-Ray Security
Imagery by a Label-Aware Mechanism

Cairong Zhao , Liang Zhu , Shuguang Dou , Weihong Deng , Member, IEEE , and Liang Wang, Fellow, IEEE

Abstract— One of the key challenges to the X-ray security
check is to detect the overlapped items in backpacks or suit-
cases in the X-ray images. Most existing methods improve the
robustness of models to the object overlapping problem by
enhancing the underlying visual information such as colors and
edges. However, this strategy ignores the situations that the
objects have similar visual clues as to the background, and
objects overlapping each other. Since the two cases rarely appear
in existing datasets, we contribute a novel dataset – Cutters
and Liquid Containers X-ray Dataset (CLCXray) to complete
the related research. Furthermore, we propose a novel Label-
aware Mechanism (LA) to tackle the object overlapping problem.
Particularly, LA establishes the associations between feature
channels and different labels and adjusts the features according
to the assigned labels (or pseudo labels) to help improve the
prediction results. Extensive experiments demonstrate that the
LA is accurate and robust to detect overlapped objects, and
also validate the effectiveness and the good generalization of the
LA for arbitrary state-of-the-art (SOTA) methods. Furthermore,
experimental results show that the network constructed by the
LA is superior to the SOTA models on OPIXray and CLCXray,
especially solving the challenges of the subset of the highly
overlapped objects.

Index Terms— Object detection, X-ray dataset, overlap.

I. INTRODUCTION

IN THE past few decades, security check is generally
recognized as an effective preventive measure for terror-

ist attacks and crimes worldwide. The X-ray-based package
security check system has been widely used in subways,
airports, customs, and other public places to check possible
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threat objects in packages for years. Although this system has
achieved great success, it still suffers from low stability and
low accuracy due to the reliance on manual human operator
review. To tackle this problem, many researchers have studied
the application of object detection algorithms to X-ray security
images to assist the staff in identifying threat objects. Schmidt-
Hackenberg et al. [1] proposed the use of two visual cortex-
inspired features, SLF-HMAX and V1-like, combined with
the bag of visual words method. Flitton et al. [2] explored
3D feature descriptors with application to object detection
in 3D CT security imagery. Baştan [3] proposed two dense
sampling methods as keypoint detectors for textureless objects
and extended the SPIN color descriptor to utilize the material
information for multi-view imagery. Kundegorski et al. [4]
benchmarked various feature point descriptors in combination
with the bag of visual words method. Jaccard et al. [5] first
used convolutional neural networks (CNN) in X-ray images
of cargo containers. Subsequently, Jaccard et al. [6] proposed
a machine learning framework for X-ray cargo inspection.
Petrozziello and Jordanov [7] used image augments to remove
noisy and fuzzy images, and evaluated the performance of
CNN and Autoencoder. Akcay et al. [8]–[13] evaluated the
performance of YoloV2 [14], R-CNN [15] and other deep
learning methods on X-ray security images.

Existing works [6], [8] show the advantage of deep learn-
ing methods against traditional methods such as the bag
of visual words method. However, deep learning methods
require a large number of samples to achieve good gener-
alization. From 2015 to 2019, there were only one public
dataset [16], of which only 1552 X-ray baggage images
are labeled with bounding boxes. In order to improve the
generalization of the model with the limited available data,
the researchers adopted techniques such as data augment and
transfer learning. Jain et al. [9] employed an imaging model
for the generation of new X-ray images. Cui and Oztan [12]
used threat image projection (TIP) to generate training data.
Bhowmik et al. [17] investigated the difference in detection
performance achieved using real and synthetic X-ray training
imagery. Gaus et al. [18] evaluated the transferability of deep
learning networks. Wei and Liu [19] designed a transfer
learning network based on SSD. However, the improvement
of these technologies in terms of generalization is limited.
Caldwell and Griffin [20] pointed out that data transfer from
optical image data to X-ray security images is only beneficial
when the data is scarce. Bhowmik et al. [17] showed the
limitations of synthetic training data for prohibited object
detection in X-ray security imagery. Cubuk et al. [21] pointed
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out that the magnitude of data augmentation is limited by
the size of the model and the training set. More importantly,
in order to study a specific problem, there must be a cus-
tomized dataset. Miao et al. [22] published a dataset Security
Inspection X-ray (SIXray), which contains a large number
of pictures without threat objects, to study the imbalance
of positive and negative samples. Wei et al. [23] released a
dataset Occluded Prohibited Items X-ray (OPIXray) to study
the overlap problem, in which images generally have complex
backgrounds.

Due to the X-ray imaging principle, the images of the
objects stacked in the baggage often overlap with each other.
Unlike the occlusion problem in optical images, overlapped
objects are still visible in the X-ray security images. How-
ever, due to the overlap of the images, the detection of the
overlapped object is disturbed. According to the difference of
overlapped objects, the overlap problem can be divided into
three types, the overlap between the object and the irrelevant
background, the overlap between the object and the similar
background, and the overlap between multiple objects. Previ-
ous works mainly studied the overlap between threat objects
and irrelevant backgrounds. Liu et al. [24] proposed a two-
stage method, which firstly used color information to segment
the target image from the input image, and then performed
detection on the target image. Hassan et al. [25] also proposed
a two-stage method, which firstly used contour information to
segment the regions of interest (ROI) from the image, and
then performed detection on the ROI. Instead of segmenting
objects from backgrounds, Wei et al. [23] proposed to use
the attention mechanism to make the network focus on the
colors and contours of the objects in the image. Besides,
Cao et al. [26] proposed to use partial appearance to identify
threat objects, which required additional partial appearance
labels.

However, the real scene is complicated. In some scenes, the
color of the background and the object are similar, and the
object does not have a clear and separable outline. Besides,
there are overlaps between different objects. In this paper,
we contribute a new dataset Cutters and Liquid Containers X-
ray Dataset (CLCXray) to further study the overlap problem.
Unlike OPIXray [23], CLCXray focuses more on the overlap
between objects and similar backgrounds, as well as the
overlap between multiple objects. In terms of categories, there
are two types of threat objects in the CLCXray dataset, cutters
and liquid containers, which are widespread but have been
ignored in previous studies. Samples of CLCXray are shown
in Fig. 1.

To solve the overlap problem, we propose a novel Label-
aware Mechanism (LA), which uses the gradient to establish
the relationship between the feature channels and the assigned
label, and weights the feature channels according to the
assigned label. Unlike previous strategies based on underlying
visual information, which do not distinguish between different
foregrounds, LA is based on high-level features. Extensive
experiments demonstrate that LA is accurate and robust to
detect overlapped objects, and also validate the effectiveness
and the good generalization of LA for arbitrary networks on
both OPIXray and CLCXray.

Fig. 1. Samples of 12 categories and corresponding X-ray images. The X-ray
image dataset contains various cutters and liquid containers that may contain
flammable or explosive liquids.

We summarize the contributions of this work as follows:
• We contribute a new dataset CLCXray for the overlap

problem. Different from all existing datasets, CLCXray
provides a large number of overlapped objects based
on real scenes, which provides a good foundation for
the research of the overlap problem. Besides, CLCXray
takes hazardous liquids into consideration, expanding the
scope of research on threat objects. Moreover, CLCXray
provides high-precision annotations, which makes up for
the current lack of high-quality bounding box (bbox)
annotations.

• We propose a new Label-aware Mechanism (LA) for the
overlap problem. Different from all existing methods,
LA separates overlapped objects in high-level feature
maps. By adaptively adjusting the corresponding features
through the labels assigned to different anchors (sampling
points), the LA can handle the overlap between objects
and similar backgrounds, as well as the overlap between
multiple objects.

• We evaluate several SOTA object detection methods on
CLCXray and OPIXray, and evaluate the performance of
LA on different methods. Extensive experiments demon-
strate that LA is accurate and robust to detect overlapped
objects, and also validate the effectiveness and the good
generalization of LA for arbitrary networks on both
OPIXray and CLCXray.

II. RELATED WORK

A. X-Ray Security Image Datasets

Mery et al. [29], [30] summarized the datasets appearing in
the papers for object detection within X-ray security imagery.
As shown in Table I, Durham Baggage Patch/Full Image
Dataset [8], MV-Xray Dataset [27], and SASC Dataset [28]
have not yet been publicly released. There are three published
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TABLE I

SUMMARY OF X-RAY SECURITY CHECK DATASETS FOR OBJECT DETECTION

datasets, GDXray, SIXray, and OPIXray. Among them, Grima
X-ray Dataset (GDXray) [16] contains multi-view images
and is usually used for classification tasks. GDXray con-
tains 5 groups: castings, welds, baggage, nature, settings,
where the group baggage is the dataset required for X-ray
security image object detection. The group baggage contains
8,150 X-ray images arranged in 77 series. The X-ray images
are taken from different containers such as backpacks, pen
cases, wallets, etc. Series B0046, B0047 and B0048 con-
tains 600 X-ray images that can be used for object detection
of handguns, shuriken, razor blades. To study the multi-
view problem, the experiments can be conducted on series
B0049, B0050, and B0051 which includes X-ray images of
individual handguns, shuriken, razor blades respectively taken
from different points of view.

Security Inspection X-ray (SIXray) [22] is used to study
the problem of class imbalance. SIXray contains a total of
1,059,231 X-ray images, of which 8,929 images are labeled.
These images were collected from several subway stations
with the original meta-data indicating the presence or absence
of prohibited items. There are six common categories of
prohibited items, namely, gun, knife, wrench, pliers, scissors,
hammer. The distribution of these objects aligns with the
real-world scenario, in which there are much fewer positive
samples compared to negative samples. To study the impact
brought by training data imbalance, Miao et al. constructed
three subsets of this dataset, and named them SIXray10,
SIXray100, and SIXray1000, respectively, with the number
indicating the ratio of negative samples over positive samples.

Occluded Prohibited Items X-ray (OPIXray) is the first
high-quality object detection dataset for security inspection.
OPIXray contains a total of 8885 Xray images of 5 categories
of cutters, namely, folding knife, straight knife, scissor, utility
knife, multi-tool knife. The backgrounds of all samples are
scanned by the security inspection machine and the prohibited
items are synthesized into these backgrounds by the pro-
fessional software. In order to study the impact brought by
occlusion levels, Wei et al. divided the testing set into three
subsets and named them Occlusion Level 1 (OL1), Occlusion
Level 2 (OL2), and Occlusion Level 3 (OL3), where the
number indicates occlusion level of prohibited items in images.

B. Label Assignment

Label assignment is a step in the object detection pipeline
to match labels and spatially distributed predictions. Currently,
most label assignment strategies are based on prior knowledge.
For example, Faster-RCNN [31], SSD [32], YOLOv3 [33],
RetinaNet [34] are based on the anchor-based IoU prior, which
assigns the label to each spatial location according to the
Intersection over Union (IoU) of the preset anchor box and
ground truth bbox. FCOS [35] is based on the center prior,
which assigns the labels to each sampling point according
to the distance from the sampling point to the center of
the ground truth bbox. However, prior-based label assignment
strategy ignores the actual content of the intersecting region,
which may contain noisy background, nearby objects or a few
meaningful parts of the target object to be detected. Since
these actual contents are reflected in the prediction results,
there have been many studies on the dynamic strategies of
label assignment based on the prediction in recent years.
FSAF [36] explored the dynamic strategy of assigning labels
to different FPN layers. In order to determine the optimal FPN
layer, FSAF designed a new module, which assigns labels
by comparing the loss between the predictions and labels in
different FPN layers. FreeAnchor [37] further explored the
dynamic strategy of assigning labels to all anchors. FreeAn-
chor formulated detector training as a maximum likelihood
estimation (MLE) procedure, which selects the most repre-
sentative anchor from a “bag” of anchors for each object.
PAA [38] proposed a novel anchor assignment strategy that
adaptively separates anchors into positive and negative samples
for a ground truth bbox according to the model’s learning
status such that it is able to reason about the separation in a
probabilistic manner.

C. Solutions to Overlap Problem

The previous works mainly studied the overlap between
objects and irrelevant backgrounds. Miao et al. [22] tried to
use the information of different FPN layers to solve the overlap
problem. From this perspective, they proposed to use fore-
ground information between different FPN layers to eliminate
background information. Liu et al. [24] tried to solve the
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overlap problem from the perspective of image processing.
Specifically, they segmented the foreground and background
in the original image based on the color statistics of threat
objects. Instead of using color information, Hassan et al. [25]
chose to use contour information to separate the front and
back backgrounds. They converted the input image into a
contour image and used a novel structure tensor to separate
the contours of the foreground and background. Wei et al. [23]
considered both color and contour information, and introduced
the attention mechanism to solve the overlap problem. In order
to make the network pay attention to the color and contour of
the image, they designed a DOAM module, which generates an
attention map based on the color and contour. The generated
attention map is used to enhance the input image.

III. THE CLCXRAY DATASET

The overlap problem is a challenging problem for X-ray
security images. In order to study this problem, a suitable
dataset is needed. Although one dataset OPIXray has been
proposed for the overlap problem, it does not cover the overlap
between multiple objects. In addition, the images of OPIXray
are synthetic by TIP, which is different from the data of the
real scene. For the above reasons, we propose a new dataset,
CLCXray. Compared with all existing datasets, CLCXray
has the most labeled images, labeled threat objects, threat
categories, and accurate annotations of bbox. The following
subsections introduce the CLCXray in details.

A. Motivation

At present, the research on the overlap problem is limited
to the overlap between the object and the background, and
there are few images with multiple objects overlapping each
other in the existing datasets. In order to expand the research
on the overlap problem, we propose the CLCXray dataset.
Fig. 2 shows the different types of overlap in CLCXray.
In addition, in the early datasets, highly lethal weapons are
the main research objects, while toxic, corrosive, flammable,
explosive liquids and various knives are neglected. Therefore,
in CLCXray, we labeled cutters and liquid containers as threat
objects, to promote research on cutters and liquid containers.
Moreover, as shown in Fig. 3, the bbox annotations in SIXray
and OPIXray are relatively rough, which is not conducive to
the study of more precise positioning of object detection.

B. Pre-Processing

The CLCXray we provide has been pre-processed, which
is approved by professionals. The raw data for each sample
comprises two 16-bit grey-scale images, with values ranging
from 0 to 65535. To transform the raw data to the three-
channel image for training, testing, and visualization, we first
divide the high-energy image and the low-energy image by
256. The resulting images constitutes the first channel and the
second channel in the three-channel image. Then we use the
ratio R of the high-energy image to the low-energy image to
fill the third channel. Since Sigmoid(0) equals 0.5, and the
value of R is greater than 0, we use the following formula to
project R to the interval between 0 and 255:

Channel3 = 510 · Sigmoid(R) − 255. (1)

Fig. 2. Three different types of overlap. (a) shows the overlap between the
vacuum cup and the irrelevant background, where the color and shape of the
vacuum cup are prominent. (b) and (c) show the overlap between multiple
plastic bottles. (d) shows the overlap between the vacuum cup and similar
background.

TABLE II

THE CATEGORY DISTRIBUTION OF CLCXRAY

After transformation, we obtain the samples shown in
Fig. 2.

C. Data Properties

The CLCXray dataset contains 9,565 X-ray images,
in which 4,543 X-ray images (real data) are obtained from
the real subway scene and 5,022 X-ray images (simulated
data) are scanned from manually designed baggages. All
images were acquired using the same type of X-ray scanner
(TECHIK, model TH-XS6550). All labels were separately
marked by 8 junior staff (less than 5 years working expe-
rience and students) and reviewed by 2 Senior staff (more
than 5 years working experience). There are 12 categories in
the CLCXray dataset, including 5 types of cutters and 7 types
of liquid containers. Five kinds of cutters include blade,
dagger, knife, scissors, swiss army knife. Seven kinds of liquid
containers include cans, carton drinks, glass bottle, plastic
bottle, vacuum cup, spray cans, tin. The distribution of each
category is shown in Table II. The CLCXray dataset contains
more than 20,000 potentially dangerous items and each X-ray
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Fig. 3. Visualization of bbox annotations on OPIXray, SIXray, and CLCXray. (A) shows the annotations in SIXray. The threat objects in SIXray are mainly
guns. (B) shows the annotations in OPIXray. The threat objects in OPIXray are mainly knives. (C) shows the annotations in CLCXray. The threat objects in
CLCXray are mainly liquid containers.

Fig. 4. Line graph of mAP decreasing with the increasing IOU threshold.

image contains more than two potentially dangerous items on
average. The resolutions of images are between 373 × 200 and
732 × 1280. The labels were made into COCO format. With
reference to the general division, CLCXray is divided into the
training set, validation set, and testing set at a ratio of 8:1:1.
We first construct the test set with a ratio of 1:9 between
simulated data and real data through random sampling. Then
we use the remaining samples to form the training set and the
test set at a ratio of 8:1. The test set contains a much higher
proportion (90%) of real samples than the proportion (43%)
of real samples in the training set and the validation set.

Compared with GDXray, SIXray and OPIXray, CLCXray
has the following unique properties: First, there are more
overlaps between multiple objects in CLCXray, as the result of
more labeled objects per image on average. As shown in Fig. 5,
nearly 60% of X-ray images in the CLCXray dataset contain
at least two or more foregrounds. In SIXray and OPIXray,
only a small number of X-ray images contain more than
one object. Fig. 2 shows the different overlaps in CLCXray.
Second, the category in CLCXray contains liquid containers,
which has not been seen in previous studies. Liquid containers
may contain toxic, corrosive, flammable, and explosive liquids,

Fig. 5. Distribution of the number of objects per image.

which are dangerous but easily overlooked. Third, CLCXray
has more accurate bbox annotations. Fig. 4 shows the line
graphs obtained by training and testing the baseline model,
ATSS [39], on different datasets. The steep decline that
occurs on OPIXray and SIXray shows the difficulty for the
model to learn accurate positioning from the bbox annotations.
Furthermore, we visualize the annotations of different datasets,
as shown in Fig. 3. Compared with SIXray and OPIXray,
CLCXray has annotations that visually fit the object edge more
closely.

D. Availability

The images and the corresponding annotation results can
only be used for ACADEMIC PURPOSES. NO COMER-
CIAL USE is allowed. Copyright ©Visual and Intelligent
Learning lab, Tongji University. All rights reserved. Download
the dataset from here:

https://github.com/GreysonPhoenix/CLCXray

IV. OUR APPROACH

A. Overall Framework

In this paper, we combine LA and ATSS to build our
network. ATSS has the following improvements based on
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Fig. 6. Overall framework. It has the same structure as FCOS [35] and ATSS [39] but with an additional branch, the Label-aware branch. The input X-ray
image is processed with ResNet-50 as the Backbone and the five-layer FPN as the Neck to generate features. The features generate prediction results in the
Head part.

Fig. 7. A representative example of overlap. Each grid on the image
corresponds to a sampling point on the feature map. The yellow bbox and the
blue bbox frame two overlapped objects. The red bbox frames an unlabeled
object (background).

RetinaNet. Structurally, ATSS uses five-layer FPN and predicts
the regression quality score, center-ness, on the regression
branch. In the choice of regression loss, ATSS uses GIoU
loss. In the label assignment strategy, ATSS changes the
fixed threshold for assigning positive or negative labels to the
dynamic threshold based on the statistics of IoUs of anchors
and ground truth bbox. As shown in Fig. 6, our overall network
structure is similar to ATSS, except that a new branch Label-
aware is added to the Head part. The Label-aware branch
forms a reverse network from the prediction results and the
label assignment to the feature map. Thus, there is a loop
in the Head part. In our setting, this loop happens only
once. Specifically, the network makes two predictions, and
the regression branch repeats twice in the second prediction.
When calculating the loss function, the first prediction is not
considered.

B. Label-Aware Mechanism

Fig. 7 shows the overlap among the vacuum cup (A), the
plastic bottle (B), and the unlabeled keyboard (background).
P is a sampling point located in the green grid. Since P is in
the overlapping area, P extracts the low-level visual feature

from both A, B, and the background. When P is responsible
for predicting A, the information from B and the background
is redundant. And when P is responsible for predicting B,
the information from A and the background is redundant.
Redundant information causes the high-level features of P
to be near the decision boundary on the feature manifold.
LA distinguishes redundant information according to the label
assigned to P, and adjusts the high-level feature to keep P
away from the decision boundary on the feature manifold. This
mechanism can be expressed as searching for an adjustment
weight with the lowest task loss L:

ŵ = arg min
w

N∑
i

L (
yi , ŷσ(i)

)
,

y = F (wx; θ) , (2)

where ŷ is the ground truth set of objects, and y = {yi }N
i=1

is the prediction set of N sampling points. σ is the mapping
from the sampling point subscript to the ground truth subscript,
which is determined by the label assignment. θ is a set of
parameters of the head part of the network. We notice that
similar objects usually cause the wrong predictions of net-
works, which indicates that similar objects may have common
features. To decrease the wrong prediction, the above formula
is modified as follows:

ŵ = arg min
w

N∑
i

(L (
yi , ŷσ(i)

) − L
(

yi , ŷ ĵ

)
),

ĵ = arg min
j

L (
yi , ŷ j, j �=σ(i)

)
,

y = F (wx; θ) . (3)

It can be seen from the formula that in order to obtain ŵ,
the label information of each sampling point is needed to
obtain through label assignment. Different from the methods
of dynamic label assignment, which usually redistributes labels
on the basis of static label assignment, LA adjusts features
on the basis of static label assignment. Label information can
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Fig. 8. Network structure of the early version of LA(left) and LAcls(right),
where x represents input features, y represents predictions, ŷ represents
assigned labels, y∗ represents mispredicted category, and Autograd represents
the torch.autograd.grad() in Pytorch. The 1 × 1 Conv2d represents a 1 × 1
convolution. The 1×1 ConvBlock represents a block with a 1×1 convolution,
a batch normalization layer, and a rectified linear unit.

be divided into classes and regressions. In the next sections,
we introduce the implementation of LA with these two types
of label information.

C. LA Using Class Labels

In this section, we introduce using the class labels to
implement LA. Our original idea is to allow the network
to learn the weight ŵ directly through the category of the
assigned label and the multi-class confidences of predictions.
Thus, the early version of LA first calculates the cross-entropy
of the confidence of the predicted category and the class label
and then uses a set of 1 × 1 convolutions to learn weights
based on the calculated results. The network structure of this
method is shown in the (A) of Fig. 8.

Although the early version of LA can improve the perfor-
mance of the model, it is unstable and lacks interpretability.
To allow the generated weight to reasonably reflect the cor-
respondence between features and labels, we take advantage
of the gradient. For the predicted confidence of a specific
category, the corresponding gradient of the feature map reflects
the importance of different positions on the feature map to
improve the confidence. Thus this gradient is consistent with
our goal. Considering that the form of residuals is conducive
to identity mapping, the formula for generating the new feature
map has the following form:

xnew = x + w1 · x . (4)

However, there may be intersections between different feature
channels required to predict different categories. Enhancing
common channels will not only increase the confidence in the
correct category but also the confidence in the wrong category.
To decrease wrong predictions, we generate a second weight
based on the category with the highest confidence other than
the correct category. By subtracting the second weight from the
first weight, we obtain the current version, which is LAcls. The
new feature map generated by LAcls has the following form:

xnew = x + w1 · x − w2 · x,

w1 = Sigmoid(∇x(y · ŷ)),

w2 = Sigmoid(∇x(y · y∗)), (5)

where ŷ represents the correct category label using one-
hot encoding, and y∗ represents the misleading category

label using one-hot encoding. The misleading category
refers to the category with the highest predicted probability
other than the correct category. y represents the predicted
multi-category confidence, which has the same shape as ŷ
and y∗.

D. LA Without Labels

LA mainly works in the training phase, using the assigned
labels to adjust features. During the testing phase, labels are
not available for LA. However, recent studies [42], [49] show
the importance of the consistency between the training phase
and the testing phase. To tackle this problem, we use pseudo-
labels generated by the predicted category to replace the role
of labels in the testing phase. When the network predicts
correctly, the pseudo labels are equivalent to the ground truth
labels. When the network predicts wrongly, LA does not
change the decision-making. And compared to the original
network, the network trained with LA learns feature extraction
and feature-to-label mapping more effectively. So overall, the
network with LA produces better predictions than the original
network in the testing phase.

E. LA Using Regression Labels

Compared with using class labels to construct the LA Mech-
anism, it is more difficult to use regression labels. Because the
pseudo-labels used in the testing phase cannot be generated in
the current general regression form. To tackle this problem,
we refer to the strategies of GFL [49] and Scope head [50] to
discretize continuous regression representation. In our method,
we first change the original regression representation into the
regression representation of FCOS, which regresses the four
distances from the center point to the four borders of the
bbox. Then we turn predicting distances in the four directions
into predicting probabilities that the distance values fall in
different numerical ranges. By discretizing the regressor in
this way, we can take the same strategy as LAcls to construct
LA using regression labels. Besides, this method can still
obtain the continuous predicted distance in the four directions
by calculating the expected value. In our experiment, we set
the maximum distance to 16 times the stride, and divide the
maximum distance into 16 intervals evenly. The LA using
regression labels is named LAreg. The new feature map is
generated by the following form:

xnew = 0.5 · x + Sigmoid(∇x (y · ŷ)) · x, (6)

where y represents the confidence of the predicted regression
target in different intervals. ŷ represents the interval where the
ground truth regression target is located.

V. EXPERIMENTS

In this section, we first set a baseline much stronger than
the SOTA method on OPIXray and verify the effectiveness
of LA by applying LA to the baseline. Then we compare
the performance of multiple SOTA object detection methods
on CLCXray and compare LA with other methods to further
verify the effectiveness of our method. We also apply LA
on other networks to verify the generality of LA. Since
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TABLE III

DETECTION PERFORMANCE IN TERMS OF MAP (%) ON CLCXRAY. THE RESULTS ARE SHOWN AS MEANS ± STDS OF THREE TRAINING RUNS

CLCXray contains a number of images without overlapped
objects, we build a much more challenging subset for further
evaluation.

A. Experiment Details

We conduct experiments on two datasets, OPIXray and
CLCXray. For OPIXray, we adopt the evaluation metric in the
article of OPIXray [23], which is the mean average precision
computed at the Intersection over Union (IoU) threshold of
0.50. For CLCXray, we adopt COCO evaluation metrics [51].
As shown in Table III, m AP represents the mean average
precision computed across 10 IoU thresholds of 0.5:0.05:0.95,
which is the primary challenge metric. m AP50 represents the
mean average precision computed at a single IoU threshold of
0.5. m AP75 represents the mean average precision computed
at a single IoU threshold of 0.75. m APs represents the m AP
for small objects (area < 322). Due to the small number of
small targets in the CLCXray test set, the standard deviation
of the results in the mAPs column is large. m APm represents
the m AP for medium objects (322 < area < 962). m APl

represents the m AP for large objects (962 < area). We use
two Nvidia RTX 3090 GPUs to conduct experiments and use
pre-trained weights in all models. The epoch of all models with
backbone R-50-FPN is uniformly set to 12. The batch size,
learning rate, momentum, weight decay and other parameters
refer to the configuration of each method in the paper. The

TABLE IV

DETECTION PERFORMANCE IN TERMS OF MAP (%) ON OPIXRAY

configuration of our network is consistent with the baseline,
in which the batch size per GPU is 4, the type of optimizer is
SGD, the epoch is 12, the learning rate is 0.01, the momentum
is 0.9, and the weight decay is 0.0001. Besides, we run
LAcls and LAreg with the same regression and classification
branches.
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TABLE V

COMPARING WITH SELF-ATTENTION METHODS.
MAPS (%) ARE REPORTED ON CLCXRAY

B. Comparing With SOTA Methods

In the OPIXray dataset, we use ATSS as the baseline and
test its performance. In addition, we test the performance
of using DOAM [19], LAreg, and LAcls on ATSS, where
DOAM is the method proposed in the OPIXray article. The
configuration of all tested methods is consistent with that on
the CLCXray dataset. We use the metric in the article [19],
which is the mean average precision computed at a single IoU
threshold of 0.5. As shown in the m AP50 column of Table IV,
ATSS is 4.17% higher than the SOTA model FCOS + DOAM.
On such a strong baseline, LAcls improves m AP50 by 1.67%.
In the CLCXray dataset, we test the SOTA model of object
detection, FCOS + DOAM, and other SOTA models of general
object detection methods in recent years. Similarly, we use
ATSS as the baseline and test its performance. We also test the
improvement of ATSS by LA. As shown in the m AP column
of Table III, the baseline, ATSS, is 3.7% higher than the SOTA
model of the overlap problem, FCOS + DOAM. On such a
strong baseline, the proposed method LAcls increases m AP
by 1.3%, and LAreg increases m AP by 0.6%. Compared with
the earlier methods, SOTA methods have small improvements
on CLCXray, indicating that CLCXray is challenging. At the
same time, LA’s improvement to the baseline is significant.
Moreover, among all models, ATSS + LAcls achieves the
highest scores on m AP .

C. Comparing With Self-Attention Methods

The self-attention methods [52], [53] and LA both adjust
the feature map based on the generated weight. The dif-
ference is that self-attention methods generate weights from
features themselves while LA generates weights from assigned
labels. To explore the difference between these two strategies,
we substitute LAcls with self-attention methods in the net-
work and evaluate these methods on CLCXray. As shown
in Table V, the performance of LAcls is 1.4% higher than
CBAM [53], 1.5% higher than SE [52], and 1.2% higher than
RCCA [54]. In general, self-attention methods achieve similar
results. Compared with learning the weight by the network
itself, our strategy of generating the weight based on labels
and gradients is more effective on the CLCXray.

TABLE VI

GENERALITY OF LA. MAPS (%) ARE REPORTED ON CLCXRAY

D. Generalization Ability of LA

In order to test the generality of our method, we choose
a static label assignment model FCOS and a dynamic label
assignment model PAA to apply our method. Both of these
are state-of-the-art models in the past two years. Experi-
ments are conducted on CLCXray. As shown in Table VI,
our method LAcls improves FCOS from 56.3 to 57.4 and
improves PAA from 58.5 to 59.3. Compared with the static
label assignment model, LA has relatively little improvement
to the dynamic label assignment model PAA. As mentioned
before, the essence of dynamic label assignment is to select
the optimal label assignment according to the state of the
extracted features, while LA adjusts the extracted features
according to the label assignment. They are the two sides
of the coin. Therefore, the performance improvements they
bring are mutually diluted. In addition, PAA is based on ATSS.
Compared with the improvement of ATSS by PAA, LA has a
greater improvement to ATSS, which shows that LA is better
for the overlap problem.

E. Ablation Studies

We add coefficients to the three terms of the Eq. 5 to study
the different role of components in LAcls. The generalized
Eq. 5 is as follows:

xnew = a · x + b · w1 · x − c · w2 · x,

w1 = Sigmoid(∇x (y · ŷ)),

w2 = Sigmoid(∇x (y · y∗)). (7)

In order to make xnew = x when LA lose effective-
ness (values of w1 and w2 are close to 0.5), we make
the following constraints:

a + 0.5 · b − 0.5 · c = 1. (8)

By changing the values of the coefficients, we obtain
Table VII, where the first row of the data corresponds to
the baseline. The experiment shows that when the three
coefficients are not all 0, the performance is the highest.

F. Analysis

Since CLCXray still contains a number of images without
overlap. We select 300 images with highly-overlapped objects
from CLCXray to build a challenging subset. Comparisons
are made among our method LA, the baseline ATSS, and the
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Fig. 9. Visualization of test images. To better display, the images have been taken partly. The left and right images are from the same groups of images, which
are detected by ATSS and ATSS + LAcls respectively. There are overlaps in all images, including the overlap between the object and similar background,
and the overlap between multiple objects.

TABLE VII

ABLATION STUDY. MAPS (%) ARE REPORTED ON CLCXRAY

TABLE VIII

MAPS (%) ARE REPORTED ON CHALLENGING SUBSET

SOTA object detection model FCOS + DOAM. To build the
challenging subset, we select and reserve the images with
the overlap between multiple objects, or the overlap between
objects and similar backgrounds in the test set. Comparisons
are shown in Table VIII. LAcls increases ATSS by 3.9%,
LAreg increases ATSS by 2.4%, and ATSS + LAcls is 3.8%
higher than SOTA model FCOS + DOAM. Fig. 9 shows
the visual test results of the baseline model ATSS and the

model ATSS + LAcls. As shown in the set of images on
the left, there are many liquid containers that have not been
successfully detected. These liquid containers usually either
overlap with other objects, or they are very similar to the
background. When there is an overlap between the object
and a similar background, the sampling point extracts too
much background information, which leads to the prediction
of the background. When there is an overlap between multiple
objects, the sampling points extract too many features of other
objects, leading to the prediction of low-quality bboxes of
other objects, and then these bboxes are removed by NMS.
As shown in the set of images on the right, several objects
with overlap problems are correctly detected. At the same
time, since LA adjusts the features, the detected objects
generally have higher confidence in predictions. Experimental
data and visualization results show that by optimizing the
feature extraction of sampling points in the overlapping area,
LA improves the robustness and accuracy of the model to
overlap problems.

VI. CONCLUSION

The overlapping problem is significant and challenging for
threat detection in X-ray images. In this paper, we first pub-
licly release a high-quality dataset CLCXray as the research
foundation for the overlapping problem. Then we propose a
new method LA to address the overlapping problem. Differ-
ent from previous methods, LA adjusts high-level features
rather than low-level visual features, which manages to sep-
arate overlapped objects in the high-dimensional space. The
visualizations show that LA generally improves the detec-
tion confidence of overlapped objects and avoids a large
number of missed detections due to overlapping problems.
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The experiments show that LA generally improves the detec-
tion performance of the models, and the combination of
ATSS and LA achieves the highest m AP . For further study,
we sample some highly overlapped samples to form a more
challenging subset. Experiments on the subset show that LA
provides a larger performance boost for the models, further
demonstrating the effectiveness of LA for detecting overlapped
objects.
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